
 

Plant Health Centre 
C/o James Hutton Institute, Invergowrie, Dundee DD2 5DA 

Phone: +44 (0)1382 568 905 
Email. info@planthealthcentre.scot; Web: www.planthealthcentre.scot 

 

PHC2018/05 - Using modelling to investigate the effectiveness of national 

surveillance monitoring aimed at detecting a Xylella fastidiosa outbreak in 

Scotland 

Steven White (CEH), James Bullock (CEH), Stephen Cavers (CEH) and Daniel 

Chapman (University of Stirling) 
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Overview 

Xylella fastidiosa is an important bacterial plant pathogen with a wide host range, causing significant 

economic impact in the agricultural and horticultural trades (Saponari, Giampetruzzi, Loconsole, Boscia, 

& Saldarelli, 2019; Tumber, Alston, & Fuller, 2014). Once restricted to the Americas, new severe outbreaks 

have recently been discovered in Italy, Spain and France, and to a lesser extent in other countries (EFSA 

Panel on Plant Health et al., 2019). Given the ever increasing global plant trade, the likelihood of this 

potentially devastating plant disease being introduced to novel locations, such as Scotland, is also 

increasing (Chapman, Purse, Roy, & Bullock, 2017). Therefore, understanding the potential spread in novel 

locations is important for accurate risk assessment and mitigation strategies. The Scottish Plant Health 

Centre requested a preliminary exploration of this potential threat in a Scottish context, with a view of 

informing contingency planning, which we address here. 

A Scottish X. fastidiosa simulation model was developed based on knowledge of the epidemiology and 

pattern of spread of X. fastidiosa subsp. pauca in olive trees in Puglia, Italy, between 2013 and 2018. The 

Scottish model runs over a 200m gridded spatial landscape of Scotland, and within each grid cell the land 

cover varies amongst assumed host cover (i.e. the percentage of susceptible host plants within a grid cell), 

representing spatial variability in susceptible host plant distributions based on land cover. Within each 

grid cell we modelled the growth of disease at a yearly scale. This model is based on a modified 

compartmental SAIR model, where we explicitly model the density of uninfected susceptible host plants 

(S), asymptomatic infected host plants (A), symptomatic infected host plants (I) and removed (i.e. dead) 

host plants (R) over time. We modelled the dispersal of disease using a stochastic dispersal model which 
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represents local and long-range dispersal of the disease (e.g. vector movement). We then deployed 

national surveillance and risk-based strategies until the disease is detected, and reported on the success 

of detection. A flow diagram representing the model is shown in Figure 1. We also performed risk and 

sensitivity and surveillance analyses on the model, informing the effectiveness of surveillance monitoring 

for an X. fastidiosa outbreak in Scotland. 

 

Figure 1: Flow diagram overview of the Scottish spread and surveillance model for testing surveillance measures on potential 

Xylella fastidiosa outbreaks. 

Model Details 
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The potential spread of Xylella fastidiosa in Scotland and the effectiveness of surveillance measures was 

investigated using a spatially explicit, stochastic simulation model. The model presented here builds upon 

current work undertaken by the authors in the EU H2020 project XF-ACTORS 

(https://www.xfactorsproject.eu) and previous models (Chapman, White, Hooftman, & Bullock, 2015; 

White, Bullock, Hooftman, & Chapman, 2017). It should be noted that the work presented here is the first 

time that we have applied the Italian Xylella model in the UK, and the work undertaken in this study is a 

precursor to that being done in the UK-wide BRIGIT project (https://www.jic.ac.uk/brigit/), which will build 

on this study. 

Previous models which are tuned for the X. fastidiosa outbreak in Puglia, Italy are unlikely to be directly 

applicable to contingency planning for X. fastidiosa entry into Scotland as the model is specific to one 

strain, and the climate and potential host plants differ from Italy, probably influencing the disease 

dynamics strongly. Nevertheless, these models are instructive to consider the scope of disease spread for 

informing contingency planning. To date, there are over 500 host plant species known (EFSA, 2018), with 

4 known subspecies of X. fastidiosa, each with multiple sequence types (ST). The epidemiology of each ST 

for each host in a particular environment is currently not known. Therefore, predicting the potential 

spread for each of these combinations is impossible. In this work we examine two epidemiological 

scenarios: the worst-case scenario where the disease progresses similarly to that in Puglia, and a less 

severe scenario where the disease progresses at a much slower rate, modelled by reducing the 

transmission rate. The rationale for the slower rate being the well-known effect of temperature on the 

growth of X. fastidiosa (e.g. Feil and Purcell (2001). Since it is unknown which strain may be potentially 

introduced to Scotland, we do not know the host species that may be affected. In our approach we 

generalise the hosts into two broad classes, woodland hosts and host plants that may be found in urban 

areas. Work undertaken as part of the BRIGIT project (https://www.jic.ac.uk/brigit/) has shown that the 

highest levels of risk (denoted by the number of recorded host species in a given location) broadly overlaps 

with the urban and woodland cover maps (unpublished).  

At the time of developing this model, little was known about the distribution and density of vector species 

in Scotland and how they may vary in different habitats and potentially contribute to the epidemiology of 

X. fastidiosa. Therefore, we made the assumption that insect vectors are evenly distributed and are 

implicitly modelled. However, the PHC funded project led by Kirsty Park, PHC2018/06, is filling this 

knowledge gap by utilising samples collected in an existing biodiversity network to identify the presence 
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of potential insect vectors of Xylella fastidiosa in the UK and the results from this project could be used in 

future model refinement. 

We assumed that an outbreak starts by the introduction of a single asymptomatic host plant into the 

landscape, the location of which is either confined to a 10km radius from an importing nursery (nursery 

locations supplied by the Scottish PHC – the names and exact locations of these nurseries have not been 

disclosed in this report) or at a random location, depending on the scenario being analysed (see 

Surveillance section below). 

Landscapes 

The urban and woodland landscapes for the modelled X. fastidiosa outbreaks were derived from Land 

Cover Map 2015 (Rowland et al., 2017). The woodland landscape is calculated from the ‘Broadleaf 

Woodland’ aggregate class and the urban landscape is calculated from the ‘Built-up Areas and Gardens’ 

aggregate class. The two 200 m resolution landscape maps give the distribution of cover types likely to 

hold a high density of susceptible host plants. To calculate percentage cover for each cover type we take 

the 25m LCM2015 raster and count the cells within the 200 x 200 m cell containing the cover type and 

divide by the total number of 25 x 25 m cells within the 200 x 200 m. The 200 m grid resolution was chosen 

since it approximates the 100 m buffer radius for felling around infected and host plants specified in 

Decision (EU) 2015/789. The two calculated landscapes are shown in Figure 2. To generalise our approach, 

and for added simplicity, we derived a single landscape that combined both urban and woodland 

landscapes (see Figure 3). 
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Figure 2: Land cover maps showing the distributions of susceptible host cover for broadleaf woodland and urban environments. 
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Figure 3: Combined urban and woodland cover. Black circles denote the approximate locations of the nurseries used in the 
analysis below (data supplied by Scottish PHC).  

 

Temporal and Spatial Disease Dynamics 

X. fastidiosa dynamics in infected grid cells were approximated with a standard deterministic 

compartmental model (Allen, Brauer, Van den Driessche, & Wu, 2008) in discrete annual time steps. The 

modelled host plant population was divided into four compartments – uninfected susceptible host plants 

(S), infected asymptomatic plants (A), infected symptomatic plants (I) and infected plants that have been 

killed or otherwise removed from the infective population (R) (Figure 4). The S proportion of the 

population moves into the A compartment at a rate determined by the current proportion of infective 

plants (A and I, with A assumed to be less infective than I due to lower bacterial concentrations). Once 

infected, plants then progress through the A and S compartments at a constant rate, finally moving into 

the R compartment. For the worst-case scenario, transmission and progression parameters were 
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estimated through a combination of expert knowledge about times for symptom development and 

canopy cover loss in olives, and infection growth observed in monitoring plot data from Puglia. 

 

Figure 4: Schematic showing the compartmental epidemiology model for Xylella fastidiosa dynamics. Solid arrows show 

movements of individuals between compartments and the dashed arrows show how the infection transition depends on the 

density of infective compartments. 

We defined the deterministic disease dynamics within X. fastidiosa infected grid cells by the following 

discrete-time versions of standard differential equations used in epidemiological compartmental 

modelling 

𝑆𝑡+1 = 𝑆𝑡 − 𝑆𝑡(1 − 𝑒−𝛽𝜐(𝐼𝑡+𝜏𝐴𝑡) 𝑁⁄ )

𝐴𝑡+1 = 𝐴𝑡 + 𝑆𝑡(1 − 𝑒−𝛽𝜐(𝐼𝑡+𝜏𝐴𝑡) 𝑁⁄ ) − 𝐴𝑡(1 − 𝑒−𝛼)

𝐼𝑡+1 = 𝐼𝑡 + 𝐴𝑡(1 − 𝑒−𝛼) − 𝐼𝑡(1 − 𝑒−𝛾) 

𝑅𝑡+1 = 𝑅𝑡 + 𝐼𝑡(1 − 𝑒−𝛾)

(1) 

where the compartments S, A, I and R are defined as in Figure 4, t is the timestep (year) and N = S + A + I 

+ R is the total number of host plants in the grid cell. Ancient Olive groves in Puglia have a typical density 

ranging around of 10,000 trees per km2, so we used this value to calculate N, as the worst-case scenario. 

Since grid cells were 200 x 200 m, the maximum N = 400 trees. This model was developed considering 

infection of olive trees, but for application to other settings, such as in this report, the compartmental 

model can be interpreted as modelling the fraction of the grid cell that is infected out of 400. 

The transmission rate 𝛽 represents the average number of transmissions from an infective plant. 

However, the transmission rate may be modified for outbreaks in novel locations, where the environment 

may have a significant effect on the epidemiology (parameter υ quantifies the reduction in transmission). 

We use this scaling parameter to explore the spread, surveillance and control at a lower transmission rate 

in Scotland (see Scenarios selection below). We assumed lower bacterial concentrations in asymptomatic 

host plants leading to lower infectivity than symptomatic plants (particularly true in olives). This is 



  

8 
 

modelled by parameter 𝜏, which quantifies the relative infectivity of asymptomatic plants compared to 

symptomatic ones. The remaining parameters are the rates of symptom development (α) and removal (γ) 

where removal is defined as canopy loss or host plant death. 

In data from monitoring plots in olive groves in Italy, we observed faster relative disease progression in 

smaller plots, which may reflect spatially limited disease transmission at very local scales. Assuming 

infection dynamics in grid cells with low susceptible cover are similar to the dynamics in small plots (which 

will be true if the susceptible cover is aggregated into monocultures such as olive groves), 𝛽 was 

established as a function of the area of susceptible habitat (H) in the grid cell thus: 

𝛽 = 𝑏0 + 𝑏1√𝐻. 

Scaling parameters b0 and b1 were estimated from Puglian plot disease progression data. 

An example of worst-case scenario (Puglia-like) temporal dynamics of the within grid cell disease 

progression is shown in Figure 5. 

 

 

Figure 5: Example modelled Xylella fastidiosa Puglia-like temporal dynamics in a 200 x 200 m grid cell completely covered by 

susceptible habitat. Note that ’removed’ refers to dead host plants killed by X. fastidiosa. 

The model also includes between-grid cell disease transmission as a stochastic process whereby infective 

plants in one grid cell transmit X. fastidiosa via implicitly modelled insect vectors to plants in other 

uninfected grid cells, spreading the disease to new locations. For this model, the transmission rate used 

for the within-grid cell model was scaled by a distance-decay function, termed a transmission kernel. This 
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ensures that new infections mostly appear in the neighbourhood of large infective populations. However, 

because the transmission kernel is specified with a long tail, the model also results in rare long-distance 

transmission events (e.g. vectors hitchhiking or wind dispersal). The kernel parameters were estimated by 

tuning the spread model to mimic the rate of spread and spatial pattern of disease observed in Puglia 

from 2013 to 2018. 

Infection of new grid cells by dispersal was modelled stochastically using a mixture of short and long-

distance exponential transmission kernels, to represent local diffusive-like movements of vectors as well 

as the rarer jumps across large distances that can spread the disease rapidly to new regions. The mixture 

kernel is described by 

𝐾(𝑑𝑖𝑗) =
(1 − 𝐿)𝑒

𝑑𝑖𝑗 ln 0.5

𝑑𝑠ℎ𝑜𝑟𝑡 + 𝐿𝑒

𝑑𝑖𝑗 ln 0.5

𝑑𝑙𝑜𝑛𝑔

2𝜋𝑑𝑖𝑗
 

where dij is the distance between two grid cells i and j, L is the proportion of long-distance dispersal and 

dshort and dlong are equivalent to the median short and long distance dispersal distances. 

In the model, the transmission kernel scales a decline in transmission rate with increasing distance from 

sources of infection. We adapted the equation for infection of susceptible individuals in the 

compartmental model to formulate the probability that a susceptible host plant in a currently uninfected 

grid cell i becomes infected from any source of infection in the modelled landscape such that  

𝜌𝑖,𝑡 = 1 − 𝑒− ∑ 𝐾(𝑑𝑖𝑗)𝛽𝑗(𝐼𝑡,𝑗+𝜏𝐴𝑡,𝑗) 𝑁𝑗⁄𝑗  

where j indexes over all other grid cells for summing the product of the dispersal kernel and the source 

transmission rate (see the Equation 

𝑆𝑡+1 = 𝑆𝑡 − 𝑆𝑡(1 − 𝑒−𝛽𝜐(𝐼𝑡+𝜏𝐴𝑡) 𝑁⁄ )

𝐴𝑡+1 = 𝐴𝑡 + 𝑆𝑡(1 − 𝑒−𝛽𝜐(𝐼𝑡+𝜏𝐴𝑡) 𝑁⁄ ) − 𝐴𝑡(1 − 𝑒−𝛼)

𝐼𝑡+1 = 𝐼𝑡 + 𝐴𝑡(1 − 𝑒−𝛼) − 𝐼𝑡(1 − 𝑒−𝛾) 

𝑅𝑡+1 = 𝑅𝑡 + 𝐼𝑡(1 − 𝑒−𝛾)

(1)). 

Potential infection of each host plant in the uninfected grid cell was simulated by drawing random 

numbers of new infections from the binomial distribution with probability 𝜌𝑖,𝑡. If any plants became 

infected, they were moved to the asymptomatic (A) compartment triggering subsequent growth of a new 

disease focus in that grid cell. 
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An example of the spread model output is shown in Figure 6. Here the disease spreads out from the initial 

introduction in a non-symmetrical fashion locally, but new foci are also established some distance away 

from the introduction site, which also begin to spread locally, which is typical of the Italian outbreak (Bucci, 

2019). It should be noted that the model is stochastic, and therefore repeated model runs with identical 

parameters will produce different patterns of spread each time. To analyse the behaviour of the stochastic 

model we ran each model 250 times, informed by trial and error, to ascertain the average behaviour.  

 

Figure 6: Example of X. fastidiosa spread over the woodland and urban landscape with Puglian worst-case scenario parameters. 

The black circle denotes the initial introduction of the outbreak, and the main plot is a magnification of the Scottish urban and 

woodland cover map (inlay). The simulation has run for 10 years since the infection was introduced, where the colour scale 

denotes the fraction of the grid cell infected (dark red indicated heavy infection). The simulation produces a patchy outbreak with 

several satellite foci distributed around the initial foci. 

Surveillance 
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The model was used to investigate surveillance strategies for detecting X. fastidiosa outbreaks. For this 

report we modelled two distinct first detection surveillance scenarios to compare and contrast. In our 

scenarios, infection is either introduced within a 10km radius of a nursery or at a random location in 

Scotland. We then modelled a mixture of national surveillance with concentrated risk-based surveillance 

around nursery location of varying radii and surveillance intensities (number of grid cells inspected) within 

the risk-based zones around the nurseries, controlled by the parameter 𝜎, the proportion of survey near 

nurseries. If 𝜎 = 1, then only grid cells within the risk-based surveillance zone around the nurseries are 

picked for surveillance. Conversely, if 𝜎 = 0, then only positive cover cells are picked for surveillance 

outside the nursery risk-based surveillance zone. Intermediate values of 𝜎 denote a mixing of strategies. 

We repeated these scenarios for varying levels of surveillance effort (i.e. the total number of cells 

inspected). 

We based our resolution for surveillance, (100 x 100 m cells), after the inspections as described in Decision 

(EU) 2015/789 and Decision (EU) 2017/2352 for eradication and containment strategies. We had chosen 

a 200 x 200 m grid cell resolution to coincide with the approximate felling radius of positively identified 

infected host plants. Therefore, we subdivided each grid cell into four 100 x 100 m squares to model the 

surveillance. Each surveillance square was subject to the national surveillance or concentrated risk-based 

surveillance, as described above. 

If the modelled visual inspection of a 100 x 100 m square locates symptomatic hosts, then the model 

selects one random symptomatic host for simulated laboratory testing. If no symptomatic hosts are 

detected, the model assumes that a randomly selected asymptomatic host is tested. Test accuracy rates 

for infected symptomatic and asymptomatic host plants were estimated from the monitoring data from 

Puglia, suggesting a significant level of false negatives (approximately 5-10%) but negligible false positive 

rates. In the model, the visual inspection and laboratory testing combine into an overall probability of 

detecting X. fastidiosa in each grid cell during surveillance. These are converted stochastically into 

detection events through Bernoulli trials (‘coin tosses’) using the overall detection probabilities. 

We model the above assumptions as follows. The probability of detecting symptomatic hosts during the 

visual inspection of a 100 x 100 m square is 

𝑃1 = 1 − (1 − 𝛹)𝑣 

where v is the visual inspection rate (proportion of the square inspected) and Ψ is the proportion of the 

population with symptoms, calculated as 



  

12 
 

𝛹 =
𝜙(𝑆+𝐴)+𝐼+𝑅

𝑁
, 

where 𝜙 is the (low) proportion of uninfected and asymptomatic plants displaying scorch like symptoms 

in the general population. 

If symptoms are detected during the simulated visual inspection of a 100 x 100 m square, then the model 

assumes that one random symptomatic plant is taken for simulated laboratory testing. In the model, the 

probability that the sampled symptomatic plant is infected with X. fastidiosa is 

𝑃2 =  
𝜙𝐴+𝐼+𝑅

𝜙(𝑆+𝐴)+𝐼+𝑅
. 

If no symptoms are detected during the simulated visual inspection of a 100 x 100 m square, then the 

model assumes that a random asymptomatic plant is taken for simulated laboratory testing. The 

probability that the sampled asymptomatic plant is infected with X. fastidiosa is 

𝑃3 =
𝐴

𝑆+𝐴
. 

During simulated laboratory testing, we assume no false positive results occur but some false negatives 

occur. This is based on Latent Class Analysis (Linzer & Lewis, 2011) of the agreement between symptoms, 

ELISA and PCR in the Puglian monitoring data and assessment of the rates at which negative ELISA results 

from symptomatic and asymptomatic trees are re-tested with the more accurate qPCR. Based on this 

analysis, false negatives occur in the model with rates fA and fS for asymptomatic and symptomatic 

samples, respectively. 

The overall probability of getting a positive test result from an inspection of a 100 x 100 m square is 

therefore 

𝑃 = 𝑃1𝑃2(1 − 𝑓𝑆) + (1 − 𝑃1)𝑃3(1 − 𝑓𝐴), 

which represents the probability of getting a positive sample from a symptomatic or asymptomatic host 

plant. 

This probability is then scaled up to the overall probability of detection in the 200 x 200 m grid cell, in 

which four 100 x 100 m inspections occur, as 

𝑃𝑑𝑒𝑡 = 1 − (1 − 𝑃)4. 

Model parameters 
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Parameters used in the simulations are defined in Table 1. The model was designed for the spread of X. 

fastidiosa pauca in olive groves in Puglia, Italy so parameter ranges reflect our understanding of the 

epidemiology in that system, and its uncertainty. Parameter values used were 50 samples from posterior 

distributions obtained by fitting the spread model to the monitoring data from Puglia. Model fitting was 

done using Approximate Bayesian Computation (Beaumont, 2010) in which prior parameter distributions 

were estimated, then 500,000 simulations were performed with random draws from the prior 

distributions and the 50 best fitting parameters retained as an approximate posterior distribution. These 

posteriors are expressed as their median and 95% range. Some other model parameters were not 

estimated but varied in the simulation experiment (see Scenarios section) so are not included here. 

Table 1: Estimated parameter values of the X. fastidiosa spread model used in the simulations.  

Parameter Meaning Values Justification 

b0 Transmission rate at low host 

cover (yr-1) 

1.830 

(1.625-

1.959) 

Prior estimated by fitting a simple 

transmission model to progression of 

symptoms in Italian monitoring plots of 

varying size. 

b1 Decline in transmission rate 

with increasing host cover 

(yr-1) 

-0.0152 

(-0.0198- 

-0.0098) 

Prior estimated by fitting a simple 

transmission model to progression of 

symptoms in Italian monitoring plots of 

varying size. 

τ Proportion of transmission 

achieved by asymptomatic 

hosts 

0.050 

(0.005-

0.098) 

Xylella concentrations are lower in 

asymptomatic hosts and bacterial 

acquisition rates by vectors on 

asymptomatic hosts is lower than on 

symptomatic hosts. 

α Symptom development rate 

(yr-1) 

2.898 

(2.317-

4.111) 

These values give 90-98% of infected 

hosts showing symptoms after one year, 

consistent with symptom development in 

olive trees (D. Boscia and M. Saponari, 

pers. comm.). 
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Parameter Meaning Values Justification 

γ Infection removal (canopy 

collapse or host plant death) 

rate (yr-1) 

0.194 

(0.176-

0.230) 

These values give median removal times 

of 3.0-3.9 years, consistent with expert 

opinion on time for canopy collapse in 

infected olive trees (D. Boscia and M. 

Saponari, pers. comm.). 

dshort Median of short distance 

dispersal kernel (km) 

0.151 

(0.043-

0.431) 

Fitted to the spread rate in Puglia and 

consistent with limited mark recapture 

data on vector movement range (D. 

Bosco, pers. comm.) 

dlong Median of long distance 

dispersal kernel (km) 

10.7 (8.0-

20.1) 

Fitted to the spread rate in Puglia 

L Proportion of long distance 

dispersal 

1.95x10-4 

(1.18x10-5 

-2.91x10-4) 

Fitted to the spread rate in Puglia 

𝜙 Proportion of uninfected 

host plants exhibiting scorch-

like symptoms 

7.72x10-4 

(7.54x10-4-

7.91x10-4) 

Prior estimated by latent class analysis 

on agreement between tests (inspection, 

ELISA and qPCR) on olive trees in Puglia 

fA False negative rate of 

infected samples from 

asymptomatic host plants 

0.109 

(0.077-

0.142) 

Prior estimated by latent class analysis 

on agreement between tests (inspection, 

ELISA and qPCR) on olive trees in Puglia 

fS False negative rate of 

infected samples from 

symptomatic host plants 

0.087 

(0.062-

0.114) 

Prior estimated by latent class analysis 

on agreement between tests (inspection, 

ELISA and qPCR) on olive trees in Puglia 

v Visual inspection rate, i.e. 

proportion of the host plants 

inspected during an 

inspection 

0.975 

(0.969-

0.982) 

Prior estimated by latent class analysis 

on agreement between tests (inspection, 

ELISA and qPCR) on olive trees in Puglia 

 

Specification of scenarios 
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Simulation scenarios varied the parameters as shown in Table 2, resulting in 400 distinct scenarios. All 

combinations of the following scenarios were run 250 times, each with a different random draw from the 

model parameter posterior distributions, thus totalling 100,000 individual model runs. 

To compare the various combinations of scenarios we plot the proportion of replicate simulations in which 

detection occurred in a 5 year period and compare this against a national surveillance strategy where 

there is an equal probability of surveying every grid cell across the landscape. 

Table 2: Scenario combinations used in the simulation experiment. 

Variable Scenarios Justification 

Surveillance and 

disease 

discovery 

 

National surveillance or a mixture of national 

surveillance and risk-based surveillance 

Assess the effectiveness of 

surveillance 

Infected plant 

introduction 

Within 10 km of a nursery or a random location Assess the effectiveness of 

surveillance, depending on 

introduction location 

Risk-based 

surveillance 

width 

 

Varying widths: 2.5, 5, 10 & 20 km Varying how far to survey from 

the nursery 

Proportion of 

survey near 

nurseries, 𝜎 

Varying proportions: 0, 0.2, 0.4, 0.6, 0.8 & 1 Varying risk-based surveillance 

intensities 

Epidemiology Puglia-like worst case scenario disease 

transmission or 90% reduced transmission  

Worst case scenario from fitted 

olive disease progression; 

reduced transmission is likely in 

Scotland 

Total 

surveillance 

effort 

Varying efforts: 100, 500, 1000, 2000 grid cells Vary the fixed number of grid 

cells inspected each year 
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Results 

Figure 7 contains details of the proportion of infected plants detected after 5 years for simulations of the 

Puglia-like, worst case scenario disease transmission. In all scenarios, the proportion of infected plants 

detected increases with the number of grid cells inspected per year. When the risk-based surveillance is 

sufficiently wide (greater or equal to 10 km), and if the infected plant is introduced within 10 km of a 

nursery then the best surveillance strategy is to only have risk-based surveillance (𝜎 = 1). However, if the 

risk-based surveillance is less wide, then the best surveillance strategy is to have a mixture of risk-based 

and national surveillance. In contrast, if the infected plant is introduced at a random location then risk-

based surveillance works poorly in general, especially at low widths (at higher widths the risk-based 

surveillance may work well – see Summary & Discussion). In all scenarios, having a mixture of national and 

risk-based surveillance nearly always outperforms a strategy of national surveillance on its own. 
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Figure 7: Proportion of simulations in which infected plants are detected by 5 years since introduction for the Puglia-like, worst 

case scenario epidemiology. The columns show the results for the two infected plant introduction scenarios: introduction within 

10 km of a nursery (left); random introduction (right). The rows show the results for varying risk-based surveillance zone widths. 

The output is plotted against the total number of grid cells inspected per year. Colours indicate the proportion of survey near 

nurseries, 𝜎. The black dashed line corresponds to the corresponding national surveillance (i.e. no risk-based surveillance). 

Figure 8 demonstrates the effect of the lower transmission rate scenario. In general, the emerging best 

surveillance strategies are similar to those in the Puglia-like transmission scenario. However, the 

proportion of outbreaks detected after 5 years is greatly reduced. 
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Figure 8: Proportion of infected plants detected after 5 years since introduction for the reduced disease transmission scenario. 

Individual panel descriptions are as in Figure 7 but note difference in y axis scale.  

Similar qualitative results can be shown to the above when reflecting on the proportion of detections 

after longer periods (e.g. after 10 years). 

Summary & Discussion 

This preliminary study for predicting the potential spread of and surveillance strategies for detecting X. 

fastidiosa in Scotland has been made possible by utilising and adapting existing models and datasets, 

along with making plausible assumptions on the epidemiology from known outbreak locations (mainly 

Puglia). We explored various scenarios on the epidemiology, introduction location and the surveillance 

strategies (type and intensity), which were interpretable in the light of existing knowledge. The results, 

applications and potential model limitations/improvements are now discussed. 
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The form of the best surveillance strategy is sensitive to whether the introduction of the infected plant is 

near to a nursery (or location that is deemed to be a likely source for introduction). In the event that the 

introduction of an infected plant is close to a location that has been determined to be a potential risk, 

then a concentrated risk-based surveillance with low-level national surveillance elsewhere is predicted to 

be the best strategy. However, by contrast, if the introduction is not near to a location that has been 

determined to be a potential risk (e.g. due to dispersal via plant sales; or other modes of introduction) 

then a national surveillance strategy is predicted to work best in most cases. However, risk-based 

surveillance was predicted to work well in some scenarios, or a mixture of low intensity risk-based 

surveillance and national surveillance. This may be because the location of nurseries are located close to 

urban or woodland cover (see Figure 3), which therefore suggests that risk-based surveillance will cover 

areas of a likely introduction, especially is the risk-based surveillance is sufficiently wide. 

The predicted best strategy is largely independent of the transmission rate, even though spread and 

disease progression is greatly reduced when the estimated transmission rate for Puglia was reduced to 

10% of its value. However, it should be noted that the probability of discovering infected plants is greatly 

reduced for the lower transmission scenario.  

We conclude that having a mixture of risk-based and national surveillance is likely to be the best option 

for detecting potential X. fastidiosa outbreaks in Scotland.   

Uncertainties Affecting the Assessment of the Model  

The model used in this assessment was developed from a generic epidemiological model originally 

designed for X. fastidiosa pauca infecting olive trees in Puglia, Italy. The model necessarily simplifies the 

real-world epidemiology in Puglia and does not explicitly represent vector population dynamics or 

regrowth and infection of suckers from heavily infected olive trees.  

Another important caveat is that epidemiological parameters may vary in different regions of Europe 

according to the bacterial subspecies, host species, host density within susceptible land cover types, 

vector ecology, climate and other factors not accounted for in the modelling. In this report we have made 

the simplifying assumption that transmission is lowered to try to understand the implications of an 

outbreak in a less favourable environment, such as Scotland. However, there may be other important 

differences that we have not considered. For example, asymptomatic periods and the infectivity of 
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asymptomatic plants may differ from the model for non-olive host plants in Scotland. Some of these 

aspects are currently being investigated in the BRIGIT project (https://www.jic.ac.uk/brigit/). We have 

had to assume, due to paucity of data, that all host plants and vectors are only found in urban and 

woodland areas. Furthermore, we assumed that the density of vectors does not vary between habitat 

types, and that the density of host plants in a grid cell is the percentage cover multiplied by a scaling factor 

(the approximate density of ancient olive trees in Puglia). We have had to make these assumptions in 

other studies (e.g. see EFSA Panel on Plant Health et al. (2019) for example). Improving the national 

mapped data on host and vector distributions and densities would help to identify potential high-risk 

areas when combining with epidemiological models.  

Our model has shown that the best surveillance strategies depend on whether the introduction of the 

infected plant is close to a known high-risk location or not. In our model it is easy to prescribe this, but in 

reality, knowing the probable location of X. fastidiosa introduction is less well understood. Therefore, it 

would be beneficial to formally estimate the most likely locations of X. fastidiosa entry into Scotland and 

a PHC funded project, led by Samantha Broadmeadow (PHC2018/04), mapped the likelihood and impact 

of a Xylella outbreak in Scotland.  Based on the results of that project, we would suggest that surveillance 

should focus on the central belt of Scotland targeting peri-urban environments and sites of special 

scientific interest.   

 

Potential Future Model Developments 

In this report we have answered questions on surveillance strategies for first detection. We have 

determined that combining risk-based surveillance with national surveillance is best for locating X. 

fastidiosa infected plants. However, the question remains of what to do once infected plants have been 

found. One approach to address this is to emulate the emergency measures described in Decision (EU) 

2015/789, in which demarcated eradication buffer zones are established around 

detected X. fastidiosa occurrences, and surveillance and disease control measures are applied within 

these zones. Specifically, in each buffer zone all infected and uninfected hosts are felled within a 100m 

radius of the infected plant and an intense survey in a 10 km radius of the infected plant is undertaken. 

However, this may not be appropriate for a Scottish outbreak, where the transmission and spread may be 

reduced compared to a Puglia-like outbreak (say), as shown here. Furthermore, these strategies could be 

refined to reflect likely introduction locations and locations of susceptible host plants.  

https://www.jic.ac.uk/brigit/
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Surveillance and laboratory testing practices may vary from those implemented in the simulations which 

emulate those in Puglia. Potential Scottish protocols could be incorporated into the model to establish 

how these may affect detection. 
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