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1 Executive Summary 
 

1.1 Aim 
The aim of the project was to construct a framework which allows studying the effects of 
climate change on emergence and spread of plant and tree pests and diseases and to apply it 
to selected pests and diseases.  
 

1.2 Methods 
The project involved three elements. Firstly, a novel modelling framework was constructed 
which combined epidemiological and economic modelling. The framework was implemented 
as a desktop and a web app, with a user-friendly front end. Secondly, we used a literature 
review to obtain estimates of epidemiological parameters and economic values (both market 
and non-market). The assumptions were discussed with an expert panel. Finally, we used the 
framework to study predictions of spread and economic impact of three pests which are 
currently not in the UK, i.e. Xylella spp., Liberibacter (Zebra chip disease) and bark beetles, 
to estimate the infestation progress and the resulting losses to the plant and tree market and 
non-market value over the period until 2050. Sensitivity analysis was used to illustrate 
uncertainty associated with the predictions 
 

1.3 Results 
All three pests are shown to have a high probability of invading, spreading and causing large 
losses in the period 2019-2050. Firstly, Xylella spp. was used as an example of a system where 
both market and non-market values are affected. In this case, we only considered its effects on 
oak and ignored the costs of statutory control measures and their impact on trade; we found 
average loss of £50m per year over 32 years (15-20% of the total value of oak lost in this 
period). The disease quickly fills in the area where climatic conditions are suitable, and the 
total area is increasing with the climate change. Secondly, in order to illustrate how the model 
can be used to estimate the potential losses in an agricultural setting, Zebra chip disease on 
potatoes was considered. Percentage losses of value due to the pest were found to be highly 
uncertain (from 5% to 87%); using 40% figure (based on proportion of potatoes used for 
chipping and processing) we predict up to 90% of the area affected as early as 2030 and the 
average loss of £40m per year (representing 15% of the total value). Finally, bark beetle impact 
on spruce was used to demonstrate the sensitivity of the predictions to climate responses. We 
found average losses of £50m per year with major damage in years 2025-45 and up to 50% of 
forest area affected. However, we also found that the results were highly sensitive to 
assumptions about the response of the pest to increase in summer temperature.  
 

1.4 Conclusions 
The project demonstrates how a combination of literature review, expert elicitation and 
modelling can be used to predict the economic losses due to pests and pathogens that are not 
yet in the UK. The study also identified key knowledge gaps for all the species and 
demonstrated how the model can be used to identify key parameters and processes to which 
the prediction is mostly sensitive. 
 
Note that the results in this report are provided for illustration purposes only and are not 
based on rigorous parameter estimation. 
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2 Introduction  
 
The invasion of plant pests and diseases is among the most important side effects of a tightly 
integrated global economy. To design an appropriate response to such invasive species, the 
decision makers need to be able to rapidly, transparently and consistently assess the extent of 
the outbreak and its economic impact. The decision-making process can significantly be 
enhanced by the availability of a flexible modelling framework that quantifies economic, 
social, environmental, political, technical and legal considerations associated with pests and 
disease spread.  
 
In 2017 the Department for Environment, Food and Rural Affairs (Defra) and the Forestry 
Commission UK commissioned a team from FERA Ltd and the universities of Stirling (later 
Strathclyde), York and Salford to develop such a modelling framework that can be used to 
study a response to actual or potential pest or disease incursion in the UK and other forests 
(Defra ITT project 7338 “Developing a plant health outbreak decision support framework”, 
Jones et al., 2018).  In 2018, the Scottish Plant Health Centre commissioned a new version of 
the framework to include a capacity to analyse the effects of climate change on spread of plant 
pests and diseases.  

 
The aims of the framework are to: 
 

• Rapidly, transparently and consistently assess the implications of the outbreak and its 
economic impact.  

• Assess future costs and benefits of control measures, taking into account uncertainties; 
this also includes an option of “doing nothing”. 

• Be user-friendly and fast. 

• Allow rapid response while using a mechanistic model. 
 
For this project, the DEFRA framework was significantly extended as follows: 
 

1 Front end has been completely redesigned and parallel computation introduced to 
speed up calculations. 

2 The model has been extended to include non-forest systems (hosts, pests and 
pathogens) and in particular to cover selected aspects of agricultural systems. 

3 We have used a literature search to assess how the key parameters and values at risk 
are expected to vary with the climate change. The analysis has been carried out for a 
selection of pests and diseases, both present and which can be arriving under selected 
climate change predictions. The approach also required a construction of a simplified 
climate and weather model (including emulators and transfer functions).  

4 The DEFRA tool assumed that the epidemic has been initiated. We have modified the 
model to incorporate the future probability of arrival. 

5 The original program did not include weather and climate influence on the processes 
it described. We have modified the model in three areas: 
a. An emulator was constructed to capture the essential features of both long-term 

(IPCC UKCP09 predictions for the mean temperature anomaly for model RCP8.5) 
and short-term (daily average temperature data).  

b. The rate of spread was modified to depend on the monthly temperature through a 
transfer function. 

c. The availability of susceptible hosts was modified to depend on long-term changes, 
selectable through the user input. 
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Project outputs include: 
 

1 A web-based application. 
2 A report outlining the methodology. 
3 A review of literature on climate influence on selected host/pest/pathogen 

combinations – Appendix A. 
4 A set of scenarios for selected host/pest/pathogen combinations – Appendices B-D. 

The case of Ips typographus was selected instead of the originally planned P. ramorum 
study due to more information being available and its potential impact on spruce 
cultivation. 

5 An extensive and completely rewritten user guide – Appendix E. 

 

2.1 Limitations of the approach 
The framework currently has a range of limitations: 
 

• Spread is not explicitly spatial as the model assumes full mixing. The model does not 
include any spatial heterogeneity in spread and damage or costs; 
o The model can still be used for horizon scanning and scenario testing when there 

is a particular uncertainty about the parameters (as here) as well as for rapid early 
guidance until a more detailed model is developed and parameterized. 

o The model can be used if we want relative figures for scales of effort. 
o The spatial elements of the spread become particularly important at larger scales. 

Although in this project we use the model to describe the spread in the whole UK, 
the simplicity of the model makes it applicable under the uncertainty even if the 
details of the spread might not be captured in detail.  

• The population age structure is assumed to be constant; 
o The model is particularly suitable for situations when the host population has a 

stable age structure, or when the pests/pathogens do not distinguish between 
different ages, or when maturation occurs very quickly (as for annual crops). 

• There is a strong dependence on the size of initial outbreak, particularly for systems 
where the pest is currently not present, making the results dependent on highly 
uncertain parameters; 
o The model allows exploration of the parameter uncertainty and its effects on the 

future spread. 

• Some stochastic elements are included (temperature) but no demographic 
stochasticity; 
o The model can be reliably used to describe the dynamics of pests/pathogens in 

situations where the number of plants involved is large. 

• The rate of spread of pests/pathogens is assumed to depend on average monthly 
temperature only and not on measures like degree-days, or on humidity, rainfall, etc.  
o The model is particularly suitable for temperature-dependent 

infections/infestations such as insect vectors, although less for humidity governed 
pathogens like Phytophthora spp. 

• The model currently does not include cryptic and latent classes. 
o The model can be used if the latent (cryptic) periods are relatively short, or if 

detection is relatively quick. 

• In the current version the uncertainty associated with the climate predictions is not 
implemented, i.e. the parameters in the model above are assumed to be constant 
between realisations.  
o As the RCP8.5 simulations results are given for other quantiles than the median, it 

would be possible to include them in the model in the future, but it was deemed to 
be unnecessary due to large uncertainties otherwise present in the case scenarios. 
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2.2 Recommended applications 
Given the balance of assumptions and scope of this tool, we feel that it could be used to: 
 

• answer broad questions concerning the future threats of different pests and pathogens 
in relative terms (e.g. pest “X” is likely to cost 10 times as much to manage as this other 
pest if it were to arrive); 

• explore initial feasibility options for the scale of control necessary for a specific well-
documented pest/pathogen; 

• provide rapid, early stage assessment of the likely impact of certain pests and 
pathogens; 

• engage with stakeholders to illustrate the effects of climate change and control 
strategies. 

 
We also stress that for detailed management advice for a specific pest or pathogen a bespoke 
epidemiological model should be developed and parameterised. 

3 The general approach 
 
The mathematical and computer model itself is part of a framework incorporating parameter 
elicitation, decision of model structure and uncertainty, followed by evaluation of results, see 
figure 1. The computer package is a user-friendly decision-support system implemented in 
Shiny (GUI version) which can run either online (hosted on an R/Shiny server, either at 
shinyapps.io or a self-hosted server) or locally from within RStudio. The current version also 
supports parallel computing (using available cores) which significantly speeds up 
computations. 
 
The elicitation box illustrates the procedures that can in general be used to obtain model 
structure and parameters. In this project, we primarily used literature to obtain the 
parameters; in the previous project on which the modelling approach is based (under separate 
funding), we also used expert survey and expert workshop, as well as data to estimate the rates 
of spread. 
 
The modelling box captures the key elements of the approach, with model structure and 
parameters described in the following section, whereas parameter values and their uncertainty 
as well as model results are addressed in the Case Studies section. Finally, we use expert 
workshop to present and evaluate the model. We also used feedback from experts to iterate 
the drafts of this report. 
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Figure. 1. Decision support and analysis framework. 

 
 

 

Figure 2. The structure of the model. 

 
The model consists of six elements: (i) the epidemiology module, including areas and regions, 
(ii) the pest arrival module, (iii) the control module, (iv) the economic module, (v) the weather 
and climate module, (vi) the reporting module, see figure 2. The five boxes on the left list 
inputs into the different elements of the model, and the box on the right represent the outputs. 
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4 Modelling framework 
 

4.1 General modelling structure 
The underlying epidemiological model is a discrete-time Susceptible-Infected-Removed-
Vaccinated (SIRV) model, commonly used in human, animal, plant and forest epidemiology, 
which captures the dynamics of both pest and pathogen spread.  
 
The basic unit in the model is considered to be area expressed in hectares; the area is split into 
four classes, unaffected and susceptible (S), infested/infected and infectious (I), removed by 
control measures (e.g. by clear-cutting or a ban on continuation of growth, (R) and treated by 
preventive measures (spraying, vaccination, planting of resistant varieties, (V). Only plants in 
the infested area are capable of causing further disease.  
 
The time step is currently taken as one month and parameters are given in units of per year. 
The time step is a compromise between accuracy of the model and speed of calculations.  
 
Each time step consists of the following sub-steps: 
 

1. The weather and climates sub-step; 
2. The arrival sub-step; 
3. The epidemiological sub-step; 
4. The control sub-step; 
5. The extinction sub-step. 

 
For clarity, sub-steps 1.-2. are discussed after the epidemiological model which introduces the 
key concepts. 
 

4.2 The epidemiological model 
The epidemiological part of the model is applied first and given by: 
 

 

S* t +1( ) = S t( )- b
S t( ) I t( )

krN

I * t +1( ) = I t( )+ b
S t( ) I t( )

krN

ü

ý

ï
ï

þ

ï
ï

    Infection step   

 

with the values at the end of the previous step given by S t( )   and I t( )  , whereas the 

temporary values in the current step are given by S* t +1( ) and I * t +1( ). N  is the total area 

of host plants and r  is the proportion of host plants in this area which are genetically 

susceptible to the infestation/infection. k  represents one of the mechanisms by which 
climate change is deemed to act on the model, with the overall population of genetically 
susceptible plants, rN  , being modified by a scale factor that represents the proportion of host 

area that is climatically suitable (a detailed discussion of the climate effect is given later in the 
report).  
 

The exponential growth rate, b  , can be reparameterised in terms of a doubling time, T
2

 , i.e. 

time needed for the initial population area to double. Then, 
 

 b=
ln 2( )
T

2

 . 
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The doubling time might be an easier quantity to estimate and to communicate to the 

stakeholders.  The rate of spread, b e,T( ), is assumed to depend on the control effort, e  under 

one of the control strategies (see below). It also depends on temperature, T  (see below for 
details). 
 
The model allows recovery from all classes to the susceptible class. This corresponds to natural 
recovery, or to replanting with susceptible plants, or return to original planting following a 
quarantine. Currently this is implemented by returning a proportion of area from each class 
of I, R and V to class S at the end of the simulation step.  
 

4.3 Control module 
The control step is applied after the epidemiological step. The measures currently 
implemented include three options: 
 
Removal of infested/infected plants, for example by clear-felling (control method 1); 
Removal of both infested/infected plants and susceptible plants, for example by replacing 
them with resistant varieties, in which case the ‘value lost’ as described below represents a 
difference in profit between the susceptible and the resistant varieties (control method 2); 
Spraying leading to reduction in the rate of spread (control method 3). 
 
Note that the control method 2 is a replacement for the original method that affected 
susceptible plants only. 
 
The equations describing different control options are given below. The effort is specified by a 
proportion of the total area that can be treated per unit of time (year), or the current 
infested/susceptible area, whichever is smaller. It is assumed that once the pest/disease is 
eradicated, control effort stops. It is also assumed that control is implemented in a single block 
of time, with start and end times to be specified by the user. Currently the control strategies 
cannot be mixed. The state of the variables after the control is applied is given by 
 

 
I
t+1

= I
t+1

* - c´ min I
t+1

* ,eN( )     Control step

R
t+1

= c´ min I
t+1

* ,eN( )   Control effect.
  

 
 
for the case when only infected plants are treated, and 
 
 
 

S
t+1

= S
t+1

* - a ´min S
t+1

* ,e´
S
t+1

*

S
t+1

* + I
t+1

*

æ

è
ç

ö

ø
÷ ´ N

æ

è
ç

ö

ø
÷

I
t+1

= I
t+1

* - a ´min I
t+1

* ,e´
I
t+1

*

S
t+1

* + I
t+1

*

æ

è
ç

ö

ø
÷ ´ N

æ

è
ç

ö

ø
÷

ü

ý

ï
ï

þ

ï
ï

    Control step

V
t+1

= a ´min S
t+1

* ,e´
S
t+1

*

S
t+1

* + I
t+1

*

æ

è
ç

ö

ø
÷ ´ N

æ

è
ç

ö

ø
÷ + a ´min I

t+1

* ,e´
I
t+1

*

S
t+1

* + I
t+1

*

æ

è
ç

ö

ø
÷ ´ N

æ

è
ç

ö

ø
÷

ü
ý
ï

þï
    Control effect.

  

 
if both susceptible and infected plants are treated. 
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Here a  is the rate at which the susceptible and infested areas are treated and moved to the 

‘resistant’ class, and c  is the rate at which the infested area is treated and moved to the 

‘removed’ class. e  represents the control effort. Then, eN  represents the maximum area 
treated per year and is selected if the infested/susceptible area is larger; otherwise, the 

infested/susceptible area is chosen. For the purpose of cost calculations, eN  is used to 
represent the area treated, independently of the infested/susceptible areas; this calculation 
reflects a situation in which effort is applied to the whole area. 
 
For method 3, the rate depends on effort as 
 

 b e( ) =
b

1+he
  

with h  determining the reduction of the rate due to effort (e.g. spraying). 

 
The model does not include the effect of replanting with susceptible material or loss of 
immunity. Thus, there are no transitions from infested, vaccinated and removed class back to 
the susceptible class. 
 

4.4 Threshold for eradication 
As a result of control methods implemented, the amount of infested material in the model 
reduces at each control sub-step. It is thus possible to eradicate the infestation, but in a 
deterministic model the level at which the infestation agent is considered to be extinct needs 
to be specified separately. As the model describes areas rather than individual trees or plants 
and thus ignores effects associated with demographic stochasticity, the populations are 
assumed to be equal to zero if they drop below a certain threshold which can be set by a user. 
Currently the threshold is set as an inverse of the planting density, representing the condition 
that an infestation level of less than a single plant or a tree, will be made extinct.  
 

4.5 Arrival module 
In the model, the introduction of infestation can occur in two ways. Firstly, the pest or 

pathogen can already be present at the start point of the simulations. Thus, at t = 0, 
 

 
S 0( ) =krN - I

0
, I 0( ) = I

0

V 0( ) = 0, R 0( ) = 0
  

 

where I
0

 is the initial infested area. If the pest is not present, I
0

= 0 .  

 
Secondly, the pest or pathogen might be arriving after the start point of the simulations, so 
that initially the host population is pest- and disease-free. Also, even if pest is already present, 
there could be future incursions in addition to the initial infestation. In the model, at each time 
step, a small additional area of infestation is created with a probability which changes in time. 
This additional area is assumed to represent a single plant, tree, or field, and can be related to 
the threshold for eradication (see the description of threshold above).  
 
To model the continuing pest incursions we use a non-stationary Poisson process, with the 
probability varying over time given by a gamma function. The gamma function depends on 
two parameters, the average arrival time, t , and the shape parameter, s . If s =1 , then the 

function describes an exponential decay in time; increase in s  leads to a more peaked 

distribution. Alternatively, if s = 0 the model defaults to a constant probability per time (a 
stationary Poisson process). The gamma function offers the model flexibility in specifying the 
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shape of the arrival time distribution and there is a single "tuning" parameter that allows us 
to specify this shape. If we think that there is a constant unchanging probability of arrival over 
time (e.g. if a fixed proportion of all shipments into the country carry a pest) then we can model 
that by using s = 0 and the constant probability. If we are very confident that the pest will 
arrive in 5 year’s time with a little uncertainty on either side then we can also model that using 
high values of s  ; equally if we think that a pest will arrive in 5 years but we are very uncertain, 

we can use smaller values of  s to capture this uncertainty. 
 
The average number of incursions per year also needs to be specified. Figure 3 shows examples 
of the time dependence and samples of the arrivals; this mechanism allows some degree of 
stochasticity into an otherwise deterministic dynamics. 
 

 
Figure 3. Arrival probability as a function of time, with a sample of arrival events; (a) constant 
arrival probability and (b) gamma-shaped arrival probability. Average number of arrivals is 0.5 per 

year and for the gamma function, s = 2 . Red line shows the dependence on time for the probability 

of intrusion, black lines show the number of new infestation events per given month. 
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Note that in the current implementation of the model, the arrivals do not go extinct due to 
demographic stochasticity and thus always contribute to the spread; this represents the ‘worst-
case scenario’ in which every arrival becomes established. This is particularly relevant for 
situations in which we have a flat arrival probability which would mean that we can never drive 
the disease to extinction under the default extinction threshold parameterisation. 
 

4.6 Weather and climate module 

4.6.1 Data sources 
 
The climate data were obtained from:  
https://www.metoffice.gov.uk/research/collaboration/ukcp 
 
which provides the following disclaimer:  
The data on this web site are available under the Open Government Licence, see 
http://www.nationalarchives.gov.uk/doc/open-government-licence/ 

 

Header length 16 

Area 312500.0 737500.0 

Baseline 1981-2000 

Data Source Land probabilistic projections 

Data Type cdf 

Scenario RCP 8.5 

Show Labels TRUE 

Software Version WPS-1.0.6-DP-1.0.6-CV-1.0.2 

Spatial Representation 25km grid 

Temporal Average Type Monthly 

Time Period all 

Time Slice Type 1-year time slices 

Variable Mean air temperature anomaly at 1.5m (Â°C) 

Year Maximum 2100 

Year Minimum 1961 

  
The weather data were obtained from https://www.meteoblue.com/en/historyplus 
 
history+ offers historical weather simulation data, with a spatial resolution between 4 and 
30 km, not measurement data. Starting in 1984, the historical weather data are available in 
hourly steps or daily aggregations with a spatial resolution of 30 km, whereas higher 
resolution data are available since 2008 for nearly every place on Earth. 
 

4.7 Parameter dependence 
We choose to incorporate the effects of climate change by allowing the epidemiological 
parameters to vary in time according to the local weather and climate conditions. The rate of 
spread of the pathogen, b  , is affected by the short-term weather predictions whilst the 

proportion of susceptible plants, k   is deemed to be affected by the longer term climatic 
variation. 
 
Existing models for climate and weather exist (UKCP09 and Meteoblue), however these highly 
detailed and complex models require significant processing power and time to run. In order 

https://www.metoffice.gov.uk/research/collaboration/ukcp
http://www.nationalarchives.gov.uk/doc/open-government-licence/
https://www.meteoblue.com/en/historyplus
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to produce a modelling tool that is fit for purpose and that can produce results quickly we have 
constructed a simplified climate and weather model. 
 
The underlying climate model captures the essential features of more complicated and realistic 
models while providing flexibility, speed and simplicity of the calculations. Two data sets were 
used to construct the model: 
 

1. The UK Climate Projections (UKCP09). Mean temperature anomaly (difference in 
temperature compared with 1985) for model RCP8.5 was used to predict the future 
trends. Monthly model predictions were created for Central Scotland for 1985-2100 
and the model is using the median value for each month. 

2. The daily average temperature data for 1985-2019 were obtained from MeteoBlue for 
a location in Scotland (Glasgow). This data set is based on weather simulations but 
rigorously checked against the past data (for details see MeteoBlue website, 
https://www.meteoblue.com/en/products).  

The model simulations start at 1985 which is where the records from the MeteoBlue web site 
are available. The program uses artificial (random) data and not the actual data for the period 
1985-2019. 
 
The model consists of two parts. The weather module uses a full simulation with a monthly 
resolution. The climate module uses only the baseline average temperature change. Thus,  

 

 

T t( ) = T
base

+T
slow
t( )+T

fast
t( )+T

month
t( )+T

rand
t( )

T
slow
t( ) =

c
1

1+ exp -c
2
t - c

3( )( )
- c

4

T
fast
t( ) =

Ac
5

1+ exp -c
2
t - c

3( )( )
´ sin 2p t - c

6( )( )´ 1+ c
7
sin 2p

t - c
8

c
9

æ

è
ç

ö

ø
÷

æ

è
ç

ö

ø
÷

T
month

t( ) = B 1+
c

10

1+ exp -c
2
t - c

3( )( )

æ

è
ç
ç

ö

ø
÷
÷
´ sin 2p t - c

6( )( )

T
rand

t( ) ~ c
11
N m = 0,s = 1( )

  

 

with T
base

= 8.78  representing the average baseline temperature in 1980s, T
slow

 representing 

the slow (decadal) change in the RCP8.5 anomaly, T
fast

 representing the fast (yearly) change 

in the RCP8.5 anomaly, T
month

 representing the natural variation at yearly time scale, and 

T
rand

 is the random component. Note that the weather results for the emulator are sampled 

at monthly interval and compared here with daily records for Glasgow. 
 

Parameters c
1
- c

10
 were estimated by comparing the RCP8.5 anomaly and the daily weather 

records with simulations. 
 
Figure 4 shows the different components of the weather and climate change, as represented 
by the emulator, compared to the detailed model results (RCP8.5) and the weather record for 
1985-2019. The emulator predictions are in strikingly good agreement with the more 
sophisticated RCP8.5 model predictions and offer a significant improvement in terms of speed 
and ease of use. 
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Figure 4. The RCP8.5 anomaly (black lines) from the IPCC simulations (top graph) compared with the 
emulator results bottom graph). The slow (decadal) change is superimposed on the record (green thick 
line; right column) and is used to model long-term changes in the availability of susceptible hosts. 
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Figure 5. The short-term variability in the weather record (Meteoblue model) for the last 10 years is 
represented by the daily mean temperature data (small red dots) and the 30-days running mean 
(black line). The emulator representation of the data is shown as its smooth part,

T
base

+T
slow
t( )+T

fast
t( )+T

month
t( )  (blue line). 

 

4.8 Transfer functions and climatic susceptibility 
The emulator successfully captures the key features of the temperature changes at different 
time scales, ranging from daily and monthly variability to decadal changes in the anomaly. It 
also assumes that not only the variability in the temperature record, but also a range of 
changes will increase over the period considered here.  
 
The next required step is to specify how the changes in temperature affect the parameters of 
the epidemiological model, the task achieved by transfer functions. 
 
The model implemented here considers two cases. Firstly, we assume that the rate of spread, 

b , is affected by the monthly temperature record. This reflects the fact that many pests and 

pathogens have clearly defined temperature ranges and will not spread or spread slower 
outside this range. In this case, the transfer function is given by a bell-shaped function, see 
Figure 7, which captures the key features of temperature response for many known pathogens. 
The formula is given by 
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where b
min

 determines the baseline rate, b
max

 is the rate value at the peak, T
thresh

  is the 

location of the peak, T
width

 determines the width of the relationship, and a  is the shape 

parameter, with a ³ 2  (the higher the value, the more “hat-like” relationship is).  
 
Figure 7 shows an example of the transfer function for the short-term weather change and the 

corresponding effect on the rate (with T
thresh

= 25,T
width

= 5,a = 8 . The pest can only effectively 

spread in the months when the temperature exceeds ~18.5o C (marked on the plot). Here we 
can see that as the average temperature trend increases over the decades, the number of years 
that contain months that exceed the critical level for successful spread of the pest increases in 
frequency until we see invasion every year after about 2018. 
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Figure 7. Top figure: The transfer function for the monthly weather component. Middle figure: a 
sample run of temperature, with the threshold marked by a horizontal line. Bottom figure: The 
corresponding rate multiplier, showing months in which, the temperatures were high enough to cause 
pest spread. 
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Secondly, we assume that the proportion of the total area with susceptible trees is being 
modified by a scale factor that represents the proportion of host area that is climatically 
suitable. This represents: 
 

• change in local weather to alter pest survivability and growth (only weather effects 
rather than climate due to the short life span of the pest).  

• change in accessible host range i.e. the proportion of the entire host population (N) 
that has a suitable environment. Given that the model is not spatially explicit this is 
how we can incorporate space. This means that the relationship over time should not 
just be increasing; we should be able to allow for the proportion of Scotland for 
example that is suitable for a particular pest to decrease over time too. For rapidly 
spreading invasive species weather would be more important. For slower spreading 
endemic pests climate would be more relevant. 

• change in host abundance or host area due to environmental changes. This would 
reflect changes to N due to weather/climate. 

 

The coefficient  k  is given by a piecewise-linear function which increases (or decreases) in 
time in a way specified by the user. 
 
We propose that the function is given by 

 

 k t( ) =

k
min

; t < t
low

k
min

+ k
max

-k
min( )x

t - t
low

t
high

- t
low

; t
low

< t < t
high

k
max

; t > t
high

ì

í

ï
ïï

î

ï
ï
ï

  

 

where the parameters t
low

 and t
high

 give the threshold times for changes to climatic 

susceptibility. 
  

Thus, for example if the multiplier k   is equal to 0 (below a lower threshold), the pest cannot 
become established (as there are no susceptible plants), and if it is equal to 1 (above the upper 
threshold), the pest can affect the maximum number of plants given by rN  see Figure 8. The 

lower bound does not need to be 0, but the upper bound needs to be smaller than 1. 
 
Figure 8 shows an example for the climatic susceptibility for the case when initially the 
climatic conditions are not suitable; the suitable area starts to increase in year 2020 and 
reaches the maximum level in 2040. 
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Figure 8. The susceptibility multiplier, k  as a function of time. 

 
The response of pests and pathogens to climate changes is potentially very complicated and 
pest and host specific, with limited data available to structure a model and parameterise it.  

 

4.9 Economic module 
The cost-benefit analysis is performed based on the valuation of ecosystem services of the 
plants, i.e. 
 

• Market values: 
o Production value, e.g. timber 

• Non-market values: 
o Carbon sequestration 
o Air pollution removal 
o Landscape value 
o Recreational values 
o Flood protection 
o Biodiversity 
o Health protection/reduction 
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and on costs of control. The individual values are entered independently and expressed as GBP 
per ha; they are multiplied by the relevant acreage to produce the total value at any given time. 
The values are all combined into a single number representing the estimate of the total value 
and the Net Present Value is calculated using an appropriate discounting factor (as specified 
in the Green Book). 
 
The following scenarios can be addressed in the model: 
 

1. Healthy-infested plants only: This is the simplest setting in which there are only two 
states, S and I, with S areas worth the baseline amount, and I areas worth the reduced 
amount. Example is provided by the Xylella infestation, in which plants continue to be 
infested, but represent a lower value due to defoliation and restrictions on recreation. 

2. Healthy-infected-removed, with R class representing areas that were infested but are 
now lost due to removal or ban on production. In this scenario, the plants in the R class 
have zero value; thus the value of S and I classes represent the difference compared to 
the R class. Example: Bark beetle infestation in which infested plants are removed; the 
reduction in the timber value captures the need to separately process infested trees.  

3. Healthy-infected-removed-resistant, with the V class (analogous to vaccinated in a 
standard SIRV model) representing areas that were healthy but are now treated or 
replanted with resistant varieties. In this scenario, the V class has the same value as 
the S class, assuming that the treatment/replanting has no effect on the usefulness of 
the plants. Example is provided by treatment of healthy trees for ash dieback or 
spraying large areas of the forest, or cutting down the susceptible trees and replanting 
with resistant varieties which have the same ability to supply the ecosystem services. 

4. Similar to 3., but with the V class treated in the same way as the R class, i.e. 
representing zero value. In that case, the value of the S class represents the differential 
between the value of fully healthy crop/trees and the value of the replacement. 
Examples include usage of resistant varieties which have a lower yield or value, or 
replacing seed potato growth with ware. 

 

Costs of treatment are assumed to be constant per area treated, i.e. eN  . 
 
Net Present Values of benefits and costs are evaluated over time, depending on the current 
status of infestation/infection and control effort, using a discount rate as specified in the UK 
Government “Green Book”, i.e. 3.5% for years 1-30 and 3% for >30 years. Cumulative NPVs 
are used in assessing the effectiveness of the control measures. Thus, 
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v
i

             value of ecosystem service i

g
i

             reduction in the value of ecosystem service i of infected plants

                     (removed worth 0)

r
i

             reduction in the value of ecosystem service i of treated plants

d               discount factor.

  

where c
t+1

 represents the costs associated with the time step t+1; similarly c
t+1

 represents 

damages at that time; value lost is then computed as a Net Present Value of the costs and 

damages by the time T. D
t
 represent the level of damages caused by the pest/pathogen. 

 
The use of the cumulative Net Present Value requires an explanation. The damages and costs 
are calculated in each period, i.e. with a monthly resolution, for a period of 32 years (2019-
2050, inclusive). The future values are discounted, using the recommended discount rate(s), 
and subsequently added to produce a total figure up to a given time. Thus, to use an illustrative 
example, let the loss of the value of Ecosystem Services be £1m every month for 384 months 
(32 years, 12 months each). Without discounting, the total figure over this period will therefore 
be £384m, with an average of £12m per year. The discounting procedure reduces the future 
value of the losses, so that the actual NPV will be smaller; in our example it will be equal to 
£231m, i.e. £7.2m per year. In more realistic examples, the losses will be determined by pest 
or pathogen spread and therefore will change over time. 
 

4.10 Parameter values and their uncertainty 
In order to address the uncertainty in the parameters and processes, the model is solved 
repeatedly using different values of parameters drawn from a distribution. Thus, although the 
model dynamics is currently purely deterministic (except when weather is included), the 
variation in parameters will translate into the distribution of outcomes.  
 
Each parameter is drawn from a triangular distribution which is currently assumed to be 
symmetric and thus the user can select the lowest and the upper limit (when the two are equal 
this means no uncertainty in the given parameter). The parameters are assumed to be 
uncorrelated. 
 
For the purpose of comparison between the scenario without control and with control, the 
random numbers are reused. Thus, a pair of two simulation runs is created, one without 
control being implemented, and one with the appropriate control, but they have the same set 
of parameters (except weather stochastic realisations). This allows a direct comparison of the 
effect of control, conditioned on all parameters being the same. 
 

4.11 Reporting module 
The model including control options is run a user-specified number of times; each run 
corresponds to a different selection of random parameters. The simulations are repeated for 
the case with no control options (effort set to zero), to obtain a benchmark corresponding to 
the “do nothing” case. The results are then presented to the user in a graphical way, with a 
median, 50% and 95% confidence limits. The source-code version which runs in RStudio 
allows the user to create custom plots. 
 
The key graphs include: 

1. The infestation progress over time. 
2. The progress of losses (damages plus costs) over time. 
3. The avoided losses distribution. 
4. The removal progress – area moved to R class. 
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The avoided losses are defined as a difference between the NPV of losses calculated for the 
case without control (“do nothing”) and the NPV of losses calculated for the case with the 
specified control strategy. Thus, a negative value of the avoided losses means that the 
combination of costs and damages with control exceed the damages when doing nothing; this 
suggests that no action should be implemented. Conversely, a positive outcome suggests that 
control is cost beneficial.  
 
Thus, for example, b  will be drawn from a triangular distribution and then a pair of 

simulations will be carried out, one of which will include appropriate control measures. The 
losses will be calculated for both cases and a difference will then give an estimate of the avoided 
losses for this pair. This process will be repeated, yielding a distribution of avoided losses. 
 
The main feature of this method is that if there is no effect of control, the value of avoided 
losses will always be equal to 0, even if the losses with and without control are randomly 
distributed. 
 

4.12 Parallel computations 
The ensemble method requires a large number of replicated runs to correctly address the 
uncertainty; this leads to long execution runs which are particularly difficult for the interactive 
version. The program is able to use the ability of modern computer processors to run the 
simulations in parallel on a multi-core architecture.  
 
The ability to use the parallel computation is regulated in two ways. Firstly, there is a variable, 
allowParallel which is settable in the scenarios. When a variable allowParallel is set to 1, it 
enables parallel computation; there is an initial lag in starting the program when compared to 
the non-parallel option (when allowParallel=0), but it then carries out simulations much 
quicker. Both the initial start up time and the speed depend on the number of cores available 
on the computer (up to 16, which is the optimal number suggested by benchmarking using a 
Linux computer with 48 cores).  
 
Unfortunately, due to an MS Windows bug, it is sometimes not possible to run the model in 
the parallel mode in RStudio on a Windows computer; allowParallel must be set to 0.  

 

4.13 Scenarios 
A complete set of all the parameters (including those used internally in the program and 
unused parameters) is called a Scenario and can be saved in a CSV file. This file can be 
investigated and modified in MS Excel or a compatible program and then input back into the 
simulation program. This allows a creation of several Scenarios, as well as helping with 
maintaining security of sensitive information related to the parameter choices. Thus, the 
model equations can be made public, but the parameter estimates and detailed model 
assumptions can be loaded only when the program is run and then discarded. 
 
The CSV file must follow exactly the format of a sample Scenario included in the package. In 
particular, the order of the columns and the first two rows must be kept exactly. Different rows 
can be added with scenarios which then can be selected from within the program. 

Appendix A: Review of the climate and weather influence on 
selected pests and pathogens 
 
In this section we provide a literature review that was subsequently used to guide the 
parameterisation of the model in Case Studies listed in Appendix B. 
 
The effect of climate change will be seen on both host plants and pathogens via impacts on 
their genomes, physiology, and environmental spread, which in turn will influence the 
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outcome of the plant-pathogen interactions – though climate change can have positive, 
negative or neutral impact on individual plant-pathogen interactions. Nevertheless, all sides 
of the plant-environment-pathogen triangle of the plant disease will be affected, and so climate 
change will add an extra layer of complexity to the task of plant protection (Pertot, Elad, 2012).  
Because a plant disease is the result of interaction between a susceptible host plant, a virulent 
pathogen and the environment, climate change will certainly affect plant diseases. The 
changes associated with global warming (i.e., increased temperatures, changes in the quantity 
and pattern of precipitation, increased CO2 and ozone levels, drought, etc.) thus, may affect 
the incidence and severity of plant disease and influence the further co-evolution of plants and 
their pathogens (Pertot, Elad, 2012; Pautasso et al., 2012).  Moreover, pathogens that have 
evolved at higher latitudes may be able to tolerate a wider range of temperatures. These 
pathogens usually live in climates cooler than their physiological optima; therefore, warming 
is expected to enhance their fitness and the risk of epidemics of the diseases with which they 
are associated (Elad, Pertot, 2014 and references therein). 
 
For example, the increased mean winter temperatures, the shift in precipitation from summer 
to winter and the tendency toward heavier rain, which have been noted in central Europe, 
favour infection by several Phytophthora species and thus increased incidence of root rot in 
forest trees (Pertot, Elad, 2012). Next, dryer conditions will lead to lower expression or lower 
efficiency of disease resistance genes in some plants (e.g. bacterial diseases in rice), but will 
also reduce the possibility of spread for certain fungal infections, such as pine needle disease 
C.rubicola, which is a wet- and cool-weather disease. Similarly, higher temperature may be 
beneficial for the northward latitudinal spread of some trees and simultaneous increase in 
spread areas of pests for which those trees are host plants. And higher CO2 content may induce 
plant structural changes and also higher fecundity and expansion of fungal pathogens 
affecting conifers, such as Colletotrichum gloeosporioides or needle blight or P. cinnamomi. 
Another example is the spread of pathogens with more frequent hurricanes, such as an 
assumed immigration of soybean rust to the USA via Hurricane Ivan, though for this pathogen 
a drier future climate will probably slow its movement across country (Garreth, 2014). 
 
There will be direct effects of climate change on pathogens. Summarizing the effect of higher 
annual temperatures, higher CO2 levels, and changes in relative humidity, it is possible to 
expect that: (i) increased air temperature would result in a poleward expansion of the 
geographical range of pathogens and in more generations per year; (ii) elevated winter 
temperatures would increase survival and hence the amount of initial inoculum in many 
pathosystems; (iii) the longer growing seasons that will result from global warming will extend 
the amount of time available for pathogen reproduction and dissemination; (iv) and that 
greater continental dryness during summer would reduce risk of infection by pathogens that 
require leaf wetness or saturated soils for infection; (v) pathogen fecundity has been shown to 
increase in the presence of elevated levels of CO2, thereby accelerating evolution in response 
to climate change (Kudela, 2009; Elad, Pertot, 2014).  
 
Climate change may directly affect several aspects of the biology of host plants, including their 
phenology, sugar and starch contents, nitrogen and phenolic contents, root and shoot biomass 
etc. Any change in any of these areas may influence infection and colonization by pathogens. 
On the other hand, abiotic stress may induce the activation of general defence pathways in 
plants, which increase resistance, but also increase the susceptibility of the plant to certain 
pathogens. Drought may impair the production of plant defence substances or growth, 
favouring the progress of the pathogen, but at the same time several diseases are less severe 
when the availability of moisture is limited. Higher CO2 concentration will result in higher leaf 
area and total biomass, and many foliar pathogens can take advantage of the more humid 
microclimate caused by denser plant growth and the higher availability of host tissue. Thus 
pathogen infection rates of these pathogens usually increase at higher CO2 levels (Pertot, Elad, 
2012). 
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Increased levels of CO2 and ozone in the atmosphere may have also indirect effects on the plant 
diseases via affecting microbial communities in soil and the functioning of the microbial 
ecosystem. It may, in turn, affect plant growth and the plants’ ability to withstand attacks by 
pathogens. Higher concentrations of atmospheric CO2 may also lead to an increased plant 
resistance to certain viruses (Elad, Pertot, 2014).  
 
In case of vector-borne diseases, climate influences the spatial distribution, susceptibility to 
infection, the spread of infection within the host as well as intensity of transmission to a new 
host, and seasonality of diseases transmitted by vectors (Kudela, 2009). In particular, in a 
warmer climate the risk of infection may be higher because the vector populations will be 
larger by the time of crop planting.  
 
Taking into account all the above effects of climate change, plant protection under the 
changing conditions will be a very complex task. As noted by Pertot and Elad (2012), under 
worst-case scenarios, several crops may require more fungicide spray treatments or higher 
application rates, thus increasing costs for farmers, prices for consumers, but also soil and 
water pollution and the likelihood of the development of fungicide resistance. At the same 
time, temperature can directly influence the degradation of chemicals and alter plant 
physiology and morphology, thus possibly reducing the efficiency of anti-disease treatments. 
So more attention will be attracted to the possibilities of changing or adapting agronomic 
practices (such as crop rotation, tillage, fertilization, irrigation, seed selection) or development 
of biocontrol agents and methods in order to cope with an increased risk of diseases (Juroszek 
and von Tiedemann 2011).  
 

Xylella fastidiosa 
As described in Bosso et al (2016b), Xylella fastidiosa is a xylem-limited bacterium that affects 
several economically important plants. Pathogenic strains of X. fastidiosa were first 
recognized in North and South America and Asia in the 1990s. This bacterium was first 
observed in Europe near Gallipoli (Apulia Region), southern Italy, in October 2013, and since 
its initial outbreak it has spread across the region and northward at a rate of approximately 
20km per year, causing considerable damage to olive groves. X. fastidiosa is transmitted by 
various species of sap-sucking hopper insects and in Apulia it is vectored to olive trees by the 
spittlebug, Philaenus spumarius. The species X. fastidiosa were subdivided into six 
subspecies (X. fastidiosa, pauca, multiplex, sandyi, tashke and morus), but only two of them, 
fastidiosa and multiplex, are formally considered valid names. 
 
Hoddle (2004) used X. fastidiosa records collected in California to project a distribution 
model CLIMEX to the rest of the world. The model was developed using the climatic response 
of this plant pathogen from the native geographic range. The main prediction was that cold 
temperatures would not allow X. fastidiosa to colonize northern France and the northern and 
central areas of grape production in Spain and Italy. Bosso et al (2016a) developed a MaxEnt 
model (described at http://biodiversityinformatics.amnh.org/open_source/maxent/) for 
X. fastidiosa in Italy based on Apulia records. The Maxent model predicted a high probability 
of X. fastidiosa occurrence in Apulia, Calabria, Basilicata, Sicily, Sardinia and coastal areas of 
Campania, Lazio and south Tuscany.  
 
Precipitation of the driest and wettest months were found to be the main variables influencing 
model performance. Based on the model predictions, X. fastidiosa had a high probability of 
colonizing areas characterized by: (a) relatively low altitude (0–150 m a.s.l.); (b) precipitation 
in the driest month <10 mm, wettest month ranging between 80 and 110 mm and warmest 
quarter <60 mm; (c) mean temperature of coldest quarter ≥8oC; (d) agricultural areas 
comprising intensive agriculture, complex cultivation patterns, olive groves, annual crops 
associated with permanent crops, orchards and vineyards; forest (essentially oak woodland); 
and Mediterranean shrubland. 
 

http://biodiversityinformatics.amnh.org/open_source/maxent/
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Further study (Bosso et al., 2016b) showed that, first, X. fastidiosa spread in the 
Mediterranean basin is unlikely to be affected by climate change, as the region is already 
suitable for the disease; and second, further spread into northern parts of Italy or France, or 
further northwards is unlikely. However, this model was calibrated by the data of Xylella’s 
current spread in southern Italy, which limits the precision of model forecast for other climatic 
zones. It is therefore possible that under certain climate change scenarios X. fastidiosa range 
would increase to include parts of Northern Europe. 
 
Godefroid et al (2018) used the historic data on Xylella spread in the native and invaded 
environments, combined with climate conditions predicted by MIROC5 model, to generate 
future disease spread and severity using a Cumulative Link Model and a Species Distributed 
Model implemented in R (packages ‘ordinal’ and ‘dismo’). Their simulations also concluded 
that subspecies X. pauca would be approximately limited by the Mediterranean basin, and the 
conditions for X. multiplex may become favourable in most of Europe up to southern England, 
except for elevated areas and cold northern regions. Accounting for the fact that the subspecies 
X. multiplex is associated to economically important plants such as almonds and olives, and 
may also colonize multiple ornamental plants, the impact of Xylella spread will likely be 
significant. 
 
DEFRA (2017) provides an updated and extended analysis of the risk of X. fastidiosa arrival 
and establishment in the UK. They confirm an earlier assessment that X. fastidiosa was 
unlikely to moderately likely to establish (in part, because cold winters and unreliable snow 
cover that limit overwinter survival) and that its potential to cause economic, environmental 
and social impacts was small. These risk ratings were primarily based on models MaxEnt and 
CLIMEX and on climatic suitability because hosts and vectors are present. However, the 
degree of uncertainty about those conclusions is very high because the species is so variable, 
is still spreading and the actual limits to its distribution are so poorly known. So both models 
are regarded as providing rather imprecise predictions.  
 
White et al (2017) developed a spatial model of Xylella spread in Italy in the early stage of 
invasion. Besides predicting the pattern of spread, the model allows to evaluate different 
disease control strategies; we used the results of the model to guide our estimation of the 
doubling time for X. fastidiosa. 
 
As cited by Godefroid et al (2018), it was shown that there is a so-called ‘cold cure 
phenomenon’, when grapevines recovered from symptoms of Xylella following multiple 
exposures to temperatures below -8oC during several hours. Furthermore, it was suggested 
that areas experiencing more than 2-3 days with minimal temperatures below -12.2C are at 
low risk of X. fastidiosa incidence. However, DEFRA (2017) cites evidence that the subspecies 
X. fastidiosa multiplex may be the principal risk to the UK, since it seems to be not as much 
affected by low temperatures as other subspecies and is also found in temperate climates as 
far north as south-eastern Canada. It is still not clear though if this cold tolerance is an 
inherent Xyllella feature or rather a result of the host-pathogen interactions. 
 

Zebra chip disease 
Zebra chip disease of potato is a serious pest of potato in North and Central Americas and New 
Zealand, first documented in late 1990s-early 2000s. According to USDA data, zebra chip 
disease is a quality issue for growers (with a potentially high economic impact) and does not 
constitute a health risk for the general public. It is caused by the bacterium Liberibacter 
solanacearum which is spread very effectively by the tomato-potato psyllid (Bactericera 
cockerelli). This psyllid is absent from the EU at the moment. In November 2016 symptoms 
of zebra chip were reported for the first time anywhere in the EU by Spanish authorities in the 
autonomous region of Cantabria, though the disease levels were low with only 0.5% tubers 
with symptoms (DEFRA, 2018). 
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Psyllid populations are likely driven, both locally and regionally, by environmental factors 
such as temperature, rainfall, host quality, etc. Studies conducted under controlled conditions, 
demonstrated that potato psyllids are able to survive for several hours when exposed to sub-
freezing temperatures. The outbreak of psyllids can be controlled with the use of both 
insecticides and biological control agents, such as some larvae, insects, parasitoids, and a 
fungus (USDA, 2014). 
 
Havercort and Verhagen (2008) analysed the effects of climate change on potato diseases and 
pests and concluded that a higher disease pressures should be expected. On one side, pests 
and disease vectors (e.g. psyllids) multiply faster at higher temperatures and also will have a 
longer period for multiplication. On the other size, overwinter survival rate for insects hiding 
in host plants will also increase (Kanters, 2018). Horton et al (2015) noted that there are two 
factors that limit northward expansion of psyllids: first, overwintering in northern latitudes 
would require the psyllid to be cold-hardy enough to survive winter temperatures; and second, 
relatively limited availability of host plants on which the psyllid can survive between the end 
of over-wintering and the emergence of potato in spring. Future warmer and more humid 
environment or emergence of a ‘bridge’ overwintering host plant may weaken the restrictive 
effect of these factors.  
 

Bark beetle 
According to Lausch et al (2011) and references there, there are more than 150 species of the 
bark beetle in Europe. Perhaps the most important is Ips typographus, which infests spruce 
trees across the continent. It is considered a secondary pest, in the sense that it finds 
favourable conditions to thrive only in damaged and dying host trees. Storms and heavy winds, 
snow damage, emissions from environmental pollutants, or water shortage as a result of 
extreme weather conditions all lead to damaged spruce trees that can serve as the ideal 
breeding grounds for I. typographus but which can easily favour an outbreak given the right 
weather conditions. Once they have reached high population levels, the I. typographus are 
even able to attack and kill healthy trees and thus are capable of causing the mortality of 
apparently-healthy trees over millions of hectares of forest.  
 
During its development, the spruce bark beetle comes through several stages, and the whole 
generation development from the copulation to the adult has duration of 7–11 weeks. Adults 
finish maturation in the spring prior to their dispersal flight. These flights are initiated in 
response to air temperatures of 20°C. The number of generations per year is dependent upon 
temperature.  
 
There is a broad consensus that global warming is changing both the temporal and spatial 
dynamics, and the pattern, frequency and population dynamics of I. typographus. In 
particular, rises in temperature are leading to changes in the number of generations per year 
and their survival through winter periods, as well as an increase in the susceptibility of the 
host vegetation. 
 
For example, in the northern part of its range, the beetle has one generation a year, but it can 
complete two generations per year further south (so-called multi-voltinism). In Central 
European lowlands it frequently completes two generations per year and has been reported to 
reach three generations in recent climatically favourable years. A first generation having a high 
rate of reproduction means the beginning of a large second generation, which will produce 
many offspring flying in the next season. 
 
Jönsson et al (2007) in their literature overview commented that the temperature increase 
will have both direct and indirect impacts on the population of the bark beetle. In particular, 
the existing research results show that first, higher temperature increases the probability of 
appearance and survival of a second generation of the bark beetle in a year, and the risk of 
lethal bark beetle attacks on living spruce trees increases with beetle population size. And 
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second, summers may become hotter and drier, and especially drought stress is a major factor 
undermining resistance of spruce trees to attacks by I. typographus.  
 
Jönsson et al (2007) also provided a detailed summary of the bark beetle development 
dynamics, which is summarized below.  
 
For beetles hibernating in the bark of the trees, a thermal requirement for spring swarming 
(i.e. for the emergence following the hibernation period) between 48 and 126 degree-days 
(above +5°C) has been recorded, whereas a heat sum of 110 to 170 degree-days was recorded 
for beetles hibernating in the soil.  
 
Swarming activity has been recorded at temperatures above 16°C and below 30°C (e.g. 
Lobinger, 1994). Mass swarming has, however, only been recorded when daily maximum 
temperature exceeds 20°C, according to reviews by Christiansen and Bakke (1988) and 
Wermelinger (2004). The swarming is followed by a temperature dependent pre-oviposition 
period of one to three days (Wermelinger and Seifert, 1999). 
 
For successful attacks on living trees, 3-4 consecutive days above the temperature threshold 
for swarming is required (Wermelinger, 2004). For daily maximum temperatures above 20°C 
this occurs on average 9-15 days after the first day exceeding 20°C. 
 
During the oviposition period, a maximum of four to five eggs are produced per female per 
day at 25–30°C, whereas it takes two days to produce one egg at 12°C (Wermelinger and 
Seifert, 1999). However, the extension of the egg-laying period also depends on the attack 
density, with fewer eggs being produced at higher densities. At low densities the oviposition 
may continue for 20 days at 25°C (Anderbrant and Lofqvist, 1988), but at higher densities, 
each female spends a shorter time in the brood tree and half of the egg clutch is produced 
within the first two to four days (Anderbrant, 1990). So on average, mass egg development 
starts in seven days after the spring swarming. 
 
Then two to four weeks after the spring swarming, about 90% of the parent beetles leave the 
brood tree. The timing is influenced by weather and attack density (Anderbrant et al., 1985).  
Approximately one third of these beetles produce a second brood (Anderbrant, 1989). 
 
Interestingly, they commented that the second brood is usually of minor importance 
compared to the first brood (Anderbrant, 1989), and is even less significant for the population 
growth in regions with two or three generations per season (Wermelinger and Seifert, 1999). 
 
The development time from egg to adult bark beetle is influenced by the temperature 
conditions within the brood tree. According to literature reviews by Annila (1969) and Harding 
and Ravn (1983), the temperature sum needed for the complete development varies between 
460 and 1170 degree-days (above +5°C), though the median is within the range of 625–750 
degree-days.  
 
After completed development, summer swarming and the production of a second generation 
can take place. The summer swarming is assumed to take place when the daily maximum 
temperature reaches +20°C after the date of completed development. 
 
The factors leading to cessation of flight activity (i.e. summer swarming) in late summer are 
not well understood, but inhibition of summer swarming has been suggested to be triggered 
by cold spells below a mean temperature of 10–15°C in autumn (Annila, 1969). 
 
Lausch et al (2011, 2013) studied the spread of the beetle in the Bavarian Forest National Park 
during 1990-2007. Based on the existing literature, they considered the impacts of biotic and 
abiotic habitat factors on the beetle. Those factors were grouped into five sets of variables: 1) 
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climatic factors that affect the mobility, larval development, proliferation and the spread of 
the I. typographus (temperature, potential duration of sunshine, potential solar radiation); 2) 
the topography of the terrain, which plays an important role in the spread of the beetle (aspect, 
slope, elevation, height differences); 3) soil types that affect the vitality of the spruces, thus 
leading to a potential increase in I. typographus infestation; 4) structure and composition of 
forest (distance to woods of different ages, percentage of spruces in the previous year, 
diameter of spruce trees); 5) spatial configuration of the previous year’s infestation (distance 
to affected areas, area and perimeter of deadwood spruce etc.). As it turned out, the 
importance of some of these factors remained approximately unchanged over the time and 
stages of the I. typographus outbreaks, while others varied in importance. Among the abiotic 
factors, the most important factor is the absolute elevation of the forest. Unlike the results 
from other studies, slope and slope orientation are not crucial for the model. Among the 
climate variables, the duration of sunshine and the potential solar radiation were not 
important. The impact of annual average temperature was not consistent: it was important 
during the periods of peak spread (higher temperatures had strong positive impact), but there 
were also periods when the model favoured lower mean temperatures. Such an ambiguous 
effect of the mean temperatures on the probability of beetle outbreaks was observed in other 
studies as well. Among the biotic factors, the soil and forest composition variables did not 
come out as very important for the analysis. However, the distance to the sites of infestation 
from the previous year, as well as the distance to and area of the deadwood from the previous 
years are among the most important factors influencing the distribution and dispersal of the 
I. typographus. Gilbert et al (2005) and Eriksson et al (2006) came to similar conclusions in 
their research. Their studies showed that the number and size of damaged trees affect the 
number of I. typographus that end up colonizing the forest. 
 
Aukema et al (2008) modelled with a spatial-temporal autologistic regression the dependence 
between climatic, spatial, and temporal characteristics of the mountain pine beetle outbreaks 
in British Columbia, Canada in 1970s-1980s and the probability of beetle spread. The climatic 
variables included temperature maximums and minimums over the year, average daily 
temperature, numbers of warm and cold days, and accumulated degree days. The temporal 
variables indicated the presence of the beetle outbreaks at the measurement points (i.e. model 
cells) in the previous three years, and the spatial variables counted the number of 
neighbouring infected cells. The main results are that, first, the presence of mountain pine 
beetle outbreaks in the closest neighbouring cells (within the distances of ca. 18km from a 
cell’s centre) is the best predictor of a cell’s chances to host an outbreaking population 
(coefficient 1.452); second, the presence of beetle outbreaks in the previous two years are also 
highly significant factors (coefficients 0.700 and 0.502); and third, the probability of outbreak 
is inversely related to the number of severe cold days during winter (coefficient -0.033, i.e. 
negative impact on larvae survival), and positively correlates with a higher number of warm 
days during the summer months when the beetles are most active (coefficient 0.036, i.e. 
positive impact during the flight period as well as additional low-water stress for the host 
trees). Although the effect of the mean temperature is less clear due to either collinearity of 
variables or a possibly non-linear effect of the temperature on the outbreak probability, the 
authors nevertheless comment that higher temperatures may generate spatial synchrony of 
beetle spread from several disjoint locations over large regions.  
 
Carroll et al (2004) is another study that looked at the impact of the climatic variables on the 
dynamics of the mountain pine beetle (Dendroctonus ponderosae) infestation area in the 
British Columbia. They observe that due to continuing global temperature increase more 
earlier climatically unsuitable (i.e. northern, relatively colder) areas become infested by the 
pine beetle. At the same time, perhaps due to excess warming, some earlier infested areas 
become less suitable for the pine beetle populations and the degree of infestation there decline. 
A possible explanation is that heat accumulation during summer forces beetle populations into 
partial multi-voltinism (i.e. when segments of the population have more than one generation 
per year), which in turn will lead to better overwintering of different stages of beetle 



 
 
 
 
 

 
Page 27 

27 

development (eggs, pupae etc.) and so to lesser flight synchrony and mass attack success in 
the following year. Nevertheless, the authors comment that while in the past the pine beetle 
outbreaks collapsed due to localized depletion of suitable host trees and the adverse effects of 
low temperatures, current climatic conditions may lead to an insufficient decline of the beetle 
population following an outbreak.  
 
A related observation was made by Ste-Marie (2015), who summarized the experience of 
studying the mountain pine beetle and counteracting its outbreaks in British Columbia, 
Canada, since 2000. As she noted, a century-long wildfire management practice created forest 
with very homogeneous, even-aged stands of large mature trees, which turned out to be an 
almost ideal habitat for the mountain pine beetle. In recent years, a c. 1.1C increase in average 
temperatures and absence of cold events in the area since 1995-96 resulted in dramatic 
increase in beetle spread and area of killed forest.  
 
Wermelinger and Seifert (1999) studied reproduction of the spruce bark beetle in the 
laboratory under different temperatures in the range 12-33°C. They fit different models for the 
daily oviposition rate, combined with beetle development, sex ratio, and mortality data, and 
find that the optimal temperature range for the beetle population expansion is 25-29°C. Under 
such conditions females both lay maximum number of eggs and produce 2-3 sister broods. 
Temperatures above 30°C lead to a rapid decline of beetle population. 
 
Jönsson et al (2007) modelled the effect of a climate change-induced temperature rise on the 
population dynamics of I. typographus for southern Sweden. They considered three scenarios, 
with the annual average temperature staying at its current level (from 10°C in May to 17°C in 
July-August) or increasing by either 2-3°C or 5-6°C by the end of the century. The results of 
the simulations predict that under climate change the spring swarming would start 
approximately 23 and 39 days earlier compared to the status quo, and the second generation 
will completely develop 28 and 50 days earlier. That is, elevated temperatures would increase 
the probability of a summer swarming, as well as the probability that the second generation 
will reach maturity before winter. Consequently, while the summer swarming (i.e. a second 
generation) would occur 1-4 times during a 30-year period under the current conditions, at 
higher annual temperatures there would on average be more than 20-25 years with a second 
generation during a 30-year period, or even every year under the hottest scenario.  
 
But there is also a negative effect of too hot climate on the beetle population. The increased 
frequency of days with temperatures exceeding the upper threshold for flight activity of 
I. typographus (i.e. above 30°C) implies that the probability of the summer swarming being 
delayed for one or a few days will correspondingly increase. An increased number of days with 
temperatures above 30°C will also have a negative effect on the development of I. typographus 
by decreasing the developmental rate of the brood (Wermelinger and Seifert, 1998). Also, 
temperatures under the bark surface exposed to direct sunlight can easily reach well above the 
lethal levels of ca. 50°C (Annila, 1969), thus adding significantly to the mortality of immature 
stages. 

Appendix B: Case study 1 - Xylella spp. on UK oak 
 
This case study illustrates the potential for the model to capture the risk of a disease that is 
currently not present in the UK but can become prevalent with climate change. We were 
unable to find sufficiently reliable estimates of the rate of spread of this pathogen that could 
be used to estimate its potential spread on hosts relevant for the UK or Scotland, or the 
ecosystem values and pathogen impacts. However, the model allows us to use the existing 
information (from Italy) and to address this uncertainty in a quantitative way. 
 
The time horizon is assumed to be 2019-2050 and the model is run 250 times; no control 
option is currently included in the model. 
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Parameter Value Comments 

Doubling time 12 months Focal spread ca 20km per year in Italy. Unknown 
in UK conditions; vectors are potentially present 
everywhere, so spread can be quick. Assumed one 
year doubling time which captures the expansion in 
Italy 2013-15. 

Total area 167,000 ha Total area of oak in the UK 

Susceptibility Maximum 
60-90% 

Assuming most oak trees will be susceptible but 
some are resistant 

Average 
incursion time 
and shape 

10 years 
average; 
shape 
parameter 
1.5 (scalar) 

Assuming that the probability of incursion is 
relatively low at present, but quickly increases – 
representing the increase in the incidence of 
Xylella in Southern Europe, with the maximum 
around 6-7 years from now and slow decay as 
susceptible hosts in Southern Europe are removed.  

Average number 
of successful 
incursions per 
year 

0.5 Assumes that on average a successful incursion 
occurs every 2 years. 

Area infected in 
each incursion 

0.05ha Equivalent to one tree assuming the density of 200 
trees per ha.  

Weather 
dependence 

No spread 
below 9.5oC 

Vectors are active May-October; this setting 
ensures that for the current climate emulator 
spread occurs in that period only. 

Long-term 
climate 
dependence 

From 20% 
to 100% of 
the 
susceptible 
area  

Representing the change of the area in which the 
bacteria can survive, from South-East England to 
most of the UK. Assumed here to occur over the 
period 2030-2050 

Ecosystem 
values: Timber  

£1,000 per 
ha per yr 

Estimate based on data from Defra; reduction in 
value of 100% assuming dead trees are not worth 
anything 

Ecosystem 
values: 
Biodiversity 

£283 per ha 
per yr 

Based on the total value for oak in GB of £302m 
(Defra). Proportions for different ecosystem service 
based on Willis et al (2003). 

Loss 100% 

Ecosystem 
values: 
Recreation and 
landscape 

£389 per ha 
per yr 

As above 
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Ecosystem 
values: Carbon 

£424 per ha 
per yr 

As above 

Ecosystem 
values: Air 
pollution 

£283 per ha 
per yr 

As above 

 

Rate of spread and values are assumed to be varying by ± 50%.  

 
The assumptions for the climate variables are illustrated in Figs. B.1 and B.2. The assumptions 
underlying the arrival model and the initial results are shown in Fig. B.3.  
 
Brief discussion of results: The initial invasion and spread is relatively slow, as the number of 
incursions and the area of each incursion are small (each incursion is assumed to be a single 
tree). There is a significant uncertainty in the initial spread, as shown in Fig. B.4, but 
subsequently spread largely follows the availability of susceptible trees (cf. Fig. B.3 top graph 
with Fig. B.2, bottom right graph). The NPV of cumulative damages reaches ca £1.5b in 2050, 
an average loss of £50m per year over 32 years (2019-2050). This estimate is a reasonable one, 
as the total Ecosystem Services value of all oak trees in the UK is estimated at ca £300m per 
year, and thus the loss represents ca 15-20% of the total value.  
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Figure B.1. The average daily temperature (Meteoblue; small red dots) and 30-days running mean of 
the average daily temperature (red line) compared with the deterministic component of the emulator 
model (blue line with dots). Vertical line marks months and the horizontal line points to the low 
threshold for the weather transfer function. The spread will be confined to May-October period as 
determined by the average daily temperature and the parameters for the rate transfer function. 
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Figure B.2. Assumptions for the climate variables for the Xylella model. Top two figures: short-term 
weather variability reflects the spread limited to May-October. Bottom figure: long-term climate shift 
from 20% of the potentially susceptible area (12-18% of the total area) in the next 10 years to 100% of 
the potentially susceptible area (60-90% of the total area). 
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Figure B.3. Top graph: The time dependence of the probability of incursions (red line) with a sample 
of arrival times (black lines) – 10 arrivals over 50 years. Middle graph: The time dependence of the 
percentage infected area. Bottom graph: The time dependence of the cumulative NPV of losses. Red 
line: median, dark blue region: 50% confidence intervals; light blue region: 95% confidence intervals.  
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Figure B.4. The initial 10 years of the expected number of infected trees, for 10 replicates (lines with 
different colour); the density of trees is assumed to be 10 per ha. Periodicity in the growth (with active 
spread May-October and dormancy November-April) is clearly seen in individual runs. These figures 
can only be obtained by downloading the data from the model as a CSV file and plotting them 
separately. 
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Appendix C: Case study 2 - Zebra chip on UK potatoes 
 
In this case study, we illustrate how the model can be used to estimate the potential losses in 
an agricultural setting. The rates of spread and the potential damage to the potato production 
in the UK could not be estimated with any reasonable accuracy. We therefore use the model 
to establish the sensitivity of the results to different assumptions about the rate and the impact 
on the industry. 
 
The time horizon is assumed to be 2019-2050 and the model is run 250 times; no control 
option is included. 

 

Parameter Value Comments 

Doubling time 12 months, 
but with 
wide range 
of the rate 

Unknown in UK conditions; vectors are potentially 
present everywhere, so spread can be very quick. 
There is evidence from the US about a very fast 
spread, but no quantitative data. 

Total area 116,200 ha Total area of potato production in the UK (2016 for 
which the last detailed data are available; GB 
Potato Market Intelligence); area harvested 120k 
ha according to Agriculture in the United Kingdom 
2017. 

Susceptibility 80-100% Most potato species are susceptible (Munyaneza et 

al. 2011). 

Average 
incursion time 
and shape 

10 years 
average; 
shape 
parameter 
1.5 (scalar) 

Similarly to Xylella, we assume that the probability 
of incursion is relatively low at present, but quickly 
increases – representing the increased risk of 
importing infected material; subsequent decay due 
to expectation of successful control. 

Average number 
of successful 
incursions per 
year 

2 More likely to be imported than Xylella due to less 
stringent control and air-borne/insect nature.  
Assuming on average 2 incursions per year. 

Area infected in 
each incursion 

10 ha Average farm size in the UK is ca 60 ha; assuming 
this holds for potato-producing farms, with 6 years 
rotation, the average field size is 10ha. Assume a 
single field infected in each incursion. 

Weather 
dependence 

No used No clear data available, so assumed spread 
throughout the year. 

Long-term 
climate 
dependence 

Not used No clear data available, so assumed susceptibility 
constant. 

Production value 
and loss  

£5,000 per 
ha per yr 

Average price for potatoes in the UK is £150-200 
per t (2016), with average yield 45 t/ha/yr and large 
volatility (GB Potato Market Intelligence). The 
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Worst case 
scenario: 
40% loss, 
i.e. infected 
crop worth 
60% 

Most likely 
scenario: 
5% loss. 

gross profit margin is estimated as £5,000 per ha 
per yr (Nix Farm Management Pocket Book, 2017) 

In the UK, 12% of the production is for chipping 
and 29% for processing; if both are assumed to be 
lost, the percentage will be 41%, but could be as 
high as 100% if potatoes for consumption are 
affected as well. 

5% loss as reported in New Zealand; lab study 
estimated 49.9-87.2% yield loss. 

No other losses are considered here; potential other 
factors include: ban on exports, loss at processing 
companies, loss of jobs. 

Other ecosystem 
services 

£0 

 

 

Rate of spread and values are assumed to be varying by ± 50%.  

 
The initial results are shown in Fig. C.1.  
 
Brief discussion of results: The initial invasion and spread is relatively slow, as the number of 
incursions and the area of each incursion are small. There is a significant uncertainty in the 
spread particularly between 5-20 years from now, as shown in Fig. C.1, reaching the estimated 
80-100% area after ca 18 years.  
 
Assuming 40% loss, the NPV of cumulative damages reaches ca £1.2b in 2050 which 
corresponds to an average loss of £40m per year over 32 years (2019-2050). This figure can 
be compared with the total value of the potato production in the UK of £600-700m per year, 
with the losses representing 15% of this value. This is less than 40%, as for most of the years 
the production will be disease-free and hence the losses will only be happening later in the 
period. 
 
100% loss (i.e. all potato production lost) corresponds to £3.5b total over 32 years, £100m 
average per year. Conversely, 5% loss will lead to £175m total loss over 32 years, £5.5m per 
year. 
 
However, there is a high uncertainty around these values due to unpredictability of the spread.  
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Figure C.1. Top graph: The time dependence of the probability of incursions (red line) with a sample 
of arrival times (black lines) – 10 arrivals over 50 years. Middle graph: The time dependence of the 
percentage infected area. Bottom graph: The time dependence of the cumulative NPV of losses. Red 
line: median, dark blue region: 50% confidence intervals; light blue region: 95% confidence intervals.  
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Appendix D: Case study 3 - Ips typographus on spruce  
 
This case study is selected to demonstrate the response of a pest to short-term variations in 
temperature. We selected I. typographus firstly for its potential impact on timber production 
in the UK and particularly in Scotland, secondly for the availability of evidence, and thirdly for 
its clear dependence on climatic forcing. 
 

Parameter Value Comments 

Doubling time 6 months Dispersal tends to be local, particularly at low 
densities; long distance flights can take place. Some 
control measures like removal of fallen trees could 
reduce the number of generations and slow down 
spread. 

Establishment requires high numbers (Allee 
effect); often follows other events like windthrow. 
These effects are not taken into account here. 

At high densities the spread might be faster due to 
the pheromone release which attracts the beetles.   

Total area 726,000 ha Total area of Sitka and Norway spruce in the UK is 
726,000 ha (Sitka 665,000 and Norway spruce 
61,000 ha); data from Forest Research - Forestry 
Facts & Figures 

Susceptibility Max 40-
60% 

Currently ca. 40% are young trees, potentially 
unaffected by Ips. However, over time these trees 
are likely to become susceptible; the assumption 
here is that we will keep replanting the forests 
keeping the same proportion of young trees. 
Additionally, assume some level of natural 
resistance.  

Data from Forest Research - Forestry Facts & 
Figures 

Average 
incursion time 
and shape 

Uniform Given high levels of infestation in parts of Europe, 
a constant probability distribution.  

Average number 
of incursions per 
year 

10 The pest is well established in parts of Europe. This 
assumes that on average ten incursions occur every 
year and the pest becomes established; however, 
the spread can only occur if the weather conditions 
are right. 

Ips is believed to having been intercepted at the UK 
ports at a rate ranging from few to over a hundred 
cases per year 

Area infected in 
each incursion 

0.2 ha Typical gap size of a windthrow in the UK (Quine 
and Bell, 1998)  
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Weather 
dependence 

No spread 
below 16°C 
and above 
30°C, with 
significant 
increase 
above 20°C 

Development at temperatures exceeding 10°C. 
Flights take place >15 °C. Mass swarming has, 
however, only been recorded when daily maximum 
temperature exceeds 20°C. 

Long-term 
climate 
dependence 

From 50% 
to 100% of 
the 
susceptible 
area 

This reflects a climatic gradient in the UK under 
which about 50% of the land currently exceeds 500 
degree days above 10°C.  An increase of 1 degree on 
average will significantly affect day-degrees and 
hence make large parts of Northern England and 
Scotland suitable. 

Ecosystem 
values: Timber  

£1,000 per 
ha per yr 

Infected 
timber 
worth 90% 

Estimate based on data from Defra/FC; reduction 
in value of 60% reflecting the need to collect timber 
from infected/dead trees before the optimal 
rotation 

Loss 10% 

Ecosystem 
values: 
Biodiversity 

£146 per ha 
per yr 

From Willis et al (2003). 

Loss 100% 

Ecosystem 
values: 
Recreation and 
landscape 

£190 per ha 
per yr 

Source as above 

Loss 100% 

Ecosystem 
values: Carbon 

£280 per ha 
per yr 

£70-489; using the average of £280. Source as 
above 

Loss 100% 

Ecosystem 
values: Air 
pollution 

£470 per ha 
per yr 

Source as above 

Loss 100% 

 

Rate of spread and values are assumed to be varying by ± 50%.  

 
The assumptions for the climate variables are illustrated in Fig. D.1; note that the time axis is 
extended to include the period from 1985 onwards. The assumptions underlying the arrival 
model and the initial results are shown in Figs. D.2.  
 
Brief discussion of results: Although the pest invades at a relatively high rate (as indeed 
reported), the establishment and spread are limited by the requirement that the temperature 
exceeds 16°C for spread and 20°C for mass swarming. As illustrated in Fig. D.1, these 
conditions have only been met sporadically in the period 1985-2019, but can occur more 
frequently and for longer within the next 10-20 years leading to very fast spread covering all 
Sitka spruce population in the south of the UK. Further, as the climate warms up, the range of 
availability will move north and the Ips infestation will follow. Cumulative losses might reach 
£1.5b over 32 years from 2019, average ca £50m per year.  
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We also use the Ips system to illustrate the level of the sensitivity of the results to the details 
of the climate response (transfer function), Fig. D.3. Small changes in the width of the 
temperature response which shifts the low-temperature threshold at which the pest can spread 
results in large changes in the prediction of outbreaks. Unfortunately, this information if often 
very difficult to obtain.  
 
Note also that the assumption is that the spread will occur in months with such high 
temperatures only, hence relatively infrequently. In reality, the spread will continue following 
such months, even in months with lower temperatures; such ‘memory’ effects are not included 
in the model. 
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Figure D.1. Assumptions for the climate variables for the Ips model. Top figure: transfer function, i.e. 
relative rate of spread as a function of temperature. Middle figure: short-term weather variability 
reflects the increased frequency and amplitude of hot weather events; this figure shows a sample 
simulation run and hence does not represent the actual weather data. Bottom figure: long-term 
climate shift from 50% of the potentially susceptible area (20-30% of the total area; representing 50% 
area of the UK and 40-60% trees being susceptible) to 100% of the potentially susceptible area (40-
60% of the total area). 
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Figure D.2. Top graph: The time dependence of the probability of incursions (red line) with a sample 
of arrival times (black lines) – 10 arrivals over 50 years. Middle graph: The time dependence of the 
infested area. Bottom graph: The time dependence of the cumulative NPV of losses. Red line: median, 
dark blue region: 50% confidence intervals; light blue region: 95% confidence intervals. 

 

1990 2000 2010 2020 2030 2040 2050

P
ro

b
. 
in

tr
u
s
io

n

0

1

0

1

2

3

4

5

6

0

20

40

60

80

100

In
fe

c
te

d
 a

re
a
 (

%
)

1985 1995 2005 2015 2025 2035 2045

0

500

1000

1500

2000

2500

D
a
m

a
g
e
+

c
o
s
ts

 (
m

 G
B

P
)

1985 1995 2005 2015 2025 2035 2045

Time (years)



 
 
 
 
 

 
Page 42 

42 

 
Figure D.3. Left column: The relative rate of spread as a function of temperature for three different 
values of the width, 3.5°C (top row), 4°C (middle row) and 4.5°C (bottom row); central point 
corresponds to 25°C and the shape factor is 3. Right column: The corresponding time dependence of 
the infested area proportion. Red line: median, dark blue region: 50% confidence intervals; light blue 
region: 95% confidence intervals. 
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